Código Oficial: | 9141 |
Sigla: | L:F |
Descrição: | . |
Ao completar esta unidade curricular, o estudante deve saber e compreender: a resolução e discussão de sistemas de equações lineares usando o método de Gauss , recorrendo à notação matricial dos sistemas; algumas das propriedades mais importantes no cálculo do determinante de uma matriz quadrada, usando-as de acordo com a matriz que lhe é apresentada, e conhecendo em particular a sua interpretação em termos de áreas e volumes; os conceitos básicos e resultados fundamentais relativos a espaços vetoriais e a aplicações lineares entre espaços vetoriais de dimensão finita.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico. Será dada atenção particular à formação na resolução de problemas, familiarizando os estudantes com heurísticas e modos de pensar dos físicos experientes.
Introdução à utilização de computadores com sistema operativo GNU/Linux.
Introdução à programação de computadores usando a linguagem Python.
Noção de linguagens de baixo nivel e alto nível; interpretadores e compiladores; editores e ambientes de desenvolvimento. Valores, tipos e expressões. Funções e procedimentos. Condições e seleção. Iteração e recursão. Estruturas de dados básicas: listas, tuplos e dicionários. Traçado de gráficos.
Introduzir os conceitos e resultados básicos de Análise Vetorial.
•Obter formação de base em Eletromagnetismo. •Derivar e apresentar as leis e métodos do Eletromagnetismo numa perspetiva fenomenológica. •Estabelecer ligações e paralelismos entre o Eletromagnetismo e a Mecânica usando conceitos como força e energia. •Evidenciar a importância do conceito de campo na formulação das leis do Eletromagnetismo e enquanto entidade mediadora das interações físicas. •Aplicar, no contexto do eletromagnetismo, conceitos e métodos da Análise Vectorial e do Cálculo Integral no espaço. •Apresentar e descrever aplicações relevantes do Eletromagnetismo em ciência e tecnologia.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Introdução os métodos de resolução de equações diferenciais ordinárias com incidência especial nas equações e sistemas de equações diferenciais lineares. Superfícies regulares de R^3, Integrais de linha e integrais de superfície. Teoremas clássicos de Análise Vectorial: Teoremas de Green, de Gauss da divergência e de Stokes
Introdução à Física Térmica. Noções básicas de Termodinâmica clássica e de Mecânica Estatística. Aplicações a sistemas clássicos simples e a sistemas quânticos.
Prática laboratorial em Física e Eletrónica.
Familiarização dos estudantes com aspectos de eletrónica e instrumentação necessários à realização de trabalho experimental, através da execução de um conjunto representativo de trabalhos de Física e Eletrónica, incluindo análise dos resultados experimentais, cálculo de erros, representação gráfica, e avaliação crítica dos resultados obtidos;
Promoção da pesquisa de informação relevante para o trabalho experimental;
Elaboração e redação de relatórios de atividades experimentais;
Desenvolvimento de competências de trabalho de grupo.
• Familiarização com ideias e métodos de Mecânica Ondulatória, Elasticidade e Hidrodinâmica. • Compreender o acoplamento entre osciladores lineares; noção de modos normais. • Entender o conceito de onda, e a sua descrição e classificações nas suas mais variadas vertentes de aplicação à física. • Efectuar análise de Fourier, bem como entender a sua importância no estudo de ondas lineares. • Compreender o resultado da sobreposição de ondas e o fenómeno de interferência e difracção. • Compreender os conceitos de velocidade de fase e de grupo e o conceito de dispersão. • Entender e descrever o estado de deformação e as tensões aplicadas num corpo elástico isotrópico, bem como relacionar as duas. • Analisar problemas simples de dinâmica de fluídos e de equilíbrio de fluídos. • Efectuar a ligação a problemas de tecnologia.
Compreender a inadequação dos conceitos clássicos na interpretação de alguns resultados experimentais e a necessidade de uma nova formulação da Física. Introduzir a mecânica ondulatória, fazendo aplicações a sistemas unidimensionais. Compreender a estrutura nuclear e processos nucleares. Estudar aplicações da Física Quântica em Astrofísica, Matéria Condensada e/ou Óptica.
Familiarizar-se com as ideias e métodos da Física Estatística. Conhecer os resultados fundamentais da Física Estatística Clássica e Quântica para sistemas físicos no equilíbrio. Realizar simulações Monte Carlo de sistemas estocásticos e aplicações simples. Conhecer algumas aplicações da Física Estatística a sistemas clássicos e quânticos.
Esta é a primeira Uc formal de Mecânica quântica.
Após a sua conclusão o aluno deve ter um bom conhecimento dos fundamentos e das metodologias da Mecânica quântica.
A disciplina tem por objectivo fornecer as competências base em astrofísica estelar, tanto em termos de conceitos como de ferramentas físico/matemáticas relevantes para a Astronomia. Com esta formação procura-se assegurar que o estudante adquire a capacidade de compreender o que é uma estrela e de quer forma os dados observacionais nos permitem estudar a física fundamental que determina o seu comportamento. A abordagem é a um nível intermédio em que paralelamente à clarificação de conceitos é dada ênfase à fundamentação dos mesmos em termos formais. Procura-se dessa forma desenvolver a compreensão de conceitos globais em astrofísica estelar e a capacidade de os relacionar, incluindo-se nomeadamente a descrição de conceitos e fenómenos físicos que ocorrem no interior e atmosferas de estrelas e aqueles que são relevantes para descrever a formação estelar.
Domínio dos formalismos clássicos da mecânica analítica e da sua aplicação a problemas de mecânica clássica. Nesta linha expõe-se o estudante às noções de simetria e algebrização na descrição do movimento, como forma introdutória a conceitos a serem desenvolvidos em cadeiras sobre Mecânica Quântica.
A unidade tem por objetivo fornecer ao estudante as competências base em diferentes áreas da astronomia computacional, permitindo ao estudante saber recorrer aos métodos computacionais e a analisar os resultados numéricos para estudar e interpretar os vários problemas de Astronomia abordados. Para tal, o estudante adquire experiência sobre os métodos, as ferramentas e as aplicações computacionais necessárias para a análise e resolução de alguns problemas comuns da astronomia moderna. O objetivo da componente prática é dotar o estudante com as técnicas e as competências necessárias para que possa resolver computacionalmente um conjunto alargado de problemas de astronomia. Procura-se ainda reforçar a capacidade de validar e interpretar os resultados numéricos através do uso de observações astronómicas relevantes para o problema em estudo.
Formular a electrodinâmica com potenciais e conhecer os processos de emissão de ondas electromagnéticas. Conhecer a teoria da relatividade restrita e suas consequências para a cinemática e a dinâmica. Conhecer a formulação relativista do campo electromagnético.
Na primeira parte são introduzidos conceitos e ferramentas fundamentais em mecânica de fluídos e são discutidas aplicações da mesma à física e à astrofísica. Na segunda parte tal abordagem é estendida ao estudo de plasmas, com particular ênfase na teoria orbital de plasmas e na magneto-hidrodinâmica (MHD). No final são apresentados alguns exemplos de aplicação da MHD ao sol e outros objetos astronómicos.
. adquirir conhecimentos e competências que permitam perceber os desenvolvimentos atuais em Fisica Nuclear e em Física de Partículas.
. aprender a fundamentação teórica dos modelos nucleares e de partículas.
. conhecer de resultados experimentais em Fisica Nuclear e em Física de Partículas.
. desenvolver a capacidade de resolução de problemas.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Pretende-se nesta unidade curricular iniciar o estudante num projeto de investigação/divulgação onde possa aprofundar os conhecimentos e competências adquiridas em outras unidades curriculares do curso. Este trabalho de investigação é desenvolvido em colaboração com investigadores, com base em tarefas que permitem a aquisição de conhecimento pela experiência e abordagem de diferentes métodos/técnicas de trabalho.
A unidade tem por objetivo fornecer ao estudante as competências base em diferentes áreas da astronomia computacional, permitindo ao estudante saber recorrer aos métodos computacionais e a analisar os resultados numéricos para estudar e interpretar os vários problemas de Astronomia abordados. Para tal, o estudante adquire experiência sobre os métodos, as ferramentas e as aplicações computacionais necessárias para a análise e resolução de alguns problemas comuns da astronomia moderna. O objetivo da componente prática é dotar o estudante com as técnicas e as competências necessárias para que possa resolver computacionalmente um conjunto alargado de problemas de astronomia. Procura-se ainda reforçar a capacidade de validar e interpretar os resultados numéricos através do uso de observações astronómicas relevantes para o problema em estudo.
Tendo por base a compreensão dos fenómenos electromagnéticos que suportam o funcionamento dos circuitos eléctricos e da electrónica, pretende-se comunicar os conceitos e estruturas centrais da teoria dos circuitos eléctricos e da electrónica analógica, e transmitir o enquadramento da electrónica digital com descrição dos seus princípios e blocos fundamentais. É também objectivo procurar que a perspectiva da utilização da electrónica na instrumentação esteja sempre presente, assim como situar a evolução histórica deste domínio da Ciência e da Tecnologia e apontar tendências para desenvolvimentos futuros.
Na primeira parte são introduzidos conceitos e ferramentas fundamentais em mecânica de fluídos e são discutidas aplicações da mesma à física e à astrofísica. Na segunda parte tal abordagem é estendida ao estudo de plasmas, com particular ênfase na teoria orbital de plasmas e na magneto-hidrodinâmica (MHD). No final são apresentados alguns exemplos de aplicação da MHD ao sol e outros objetos astronómicos.
O objetivo deste curso é apresentar os conceitos envolvidos na aplicação da física ao estudo da Terra. Os seguintes tópicos serão abordados durante o curso: Geotermia, Geoelectricidade, Métodos Eletromagnéticos, e Sismologia e a Estrutura Interna da Terra.
Aquisição dos conceitos básicos de Probabilidades e Estatística e sua aplicação a situações concretas
A disciplina tem por objectivo fornecer as competências base em astrofísica estelar, tanto em termos de conceitos como de ferramentas físico/matemáticas relevantes para a Astronomia. Com esta formação procura-se assegurar que o estudante adquire a capacidade de compreender o que é uma estrela e de quer forma os dados observacionais nos permitem estudar a física fundamental que determina o seu comportamento. A abordagem é a um nível intermédio em que paralelamente à clarificação de conceitos é dada ênfase à fundamentação dos mesmos em termos formais. Procura-se dessa forma desenvolver a compreensão de conceitos globais em astrofísica estelar e a capacidade de os relacionar, incluindo-se nomeadamente a descrição de conceitos e fenómenos físicos que ocorrem no interior e atmosferas de estrelas e aqueles que são relevantes para descrever a formação estelar.
Domínio dos formalismos clássicos da mecânica analítica e da sua aplicação a problemas de mecânica clássica. Nesta linha expõe-se o estudante às noções de simetria e algebrização na descrição do movimento, como forma introdutória a conceitos a serem desenvolvidos em cadeiras sobre Mecânica Quântica.
Formular a electrodinâmica com potenciais e conhecer os processos de emissão de ondas electromagnéticas. Conhecer a teoria da relatividade restrita e suas consequências para a cinemática e a dinâmica. Conhecer a formulação relativista do campo electromagnético.
. adquirir conhecimentos e competências que permitam perceber os desenvolvimentos atuais em Fisica Nuclear e em Física de Partículas.
. aprender a fundamentação teórica dos modelos nucleares e de partículas.
. conhecer de resultados experimentais em Fisica Nuclear e em Física de Partículas.
. desenvolver a capacidade de resolução de problemas.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Objectivos A Geologia Estrutural é a ciência (ramo da Geologia) que tem como objectivo o estudo das estruturas (forma e geometria interna e externa) adquiridas pelos corpos rochosos após a sua formação, as suas causas e distribuição geográfica. A Geologia Estrutural avança, não só pela mera descrição das estruturas, mas através da análise rigorosa dessas estruturas e dos mecanismos que as geram. Para se conseguir isto, é necessário recorrer à quantificação, à formulação matemática e ao estabelecimento de modelos físicos. Os objectivos da Geologia Estrutural incluem dois pontos fundamentais: • Definição, caracterização e relação das estruturas observadas e os episódios de deformação; • Caracterização do estado de tensão dominante em cada fase de deformação.
Aquisição de conceitos básicos e fundamentais sobre os processos geodinâmicos internos e externos, sua interdependência e compreensão dos seus efeitos.
Pretende-se familiarizar o aluno com a leitura de cartas militares e de cartas geológicas a diversas escalas. Pretende-se que o aluno fique habilitado a realizar perfis geológicos em cartas geológicas de uso corrente, bem como que o aluno consiga resolver problemas simples de geologia em mapas geológicos. Pretende dar as bases para a interpretação fotogeológica de uma área. Pretende-se que o aluno conheça os princípios da realização de um levantamento geológico no terreno.
Disciplina que trata de dois temas essenciais, a Estratigrafia e a Paleontologia divididos em sub-temas. Pela aplicação dos princípios fundamentais da Estratigrafia e das metodologias clássicas de correlação bem como de outras mais recentes como a análise de fácies, a análise tectonossedimentar e a análise sequencial, e pela caracterização física, química e biológica dos ambientes, processos e produtos sedimentares, enquadrados no contexto geológico e temporal em que ocorrem, objectiva-se o conhecimento e a compreensão de modelos causa/efeito tendo como permuta principal o processo/produto geológico integrado na análise espacial e temporal de bacias sedimentares e respectivas relações com a geodinâmica ao longo dos tempos geológicos Na Paleontologia Geral pretende-se que os alunos adquiram conhecimentos básicos da Paleontologia, nomeadamente sobre as aplicações desta disciplina, métodos e técnicas de investigação, relações com a Estratigrafia e Geohistória, assim como sobre a Sistemática Paleontológica. Os outros sub-temas dizem respeito à Paleozoologia e Paleobotânica e Evolução da Vida na Terra e tem por objectivo fornecer conhecimentos que permitam a identificação dos fósseis mais importantes no estudo da Estratigrafia salientando a sua importância no estabelecimento de biozonas, correlações estratigráficas, interpretação dos ambientes sedimentares, conhecimento da evolução da vida e sua relação com a história da Terra.
Compreender a génese e evolução do relevo/paisagem de Portugal em ligação com o contexto geológico e geotectónico e os processos exógenos.
Identificar e descrever as características das geoformas e sua relação com os processos geomorficos e o clima.
Descrever aspetos relevantes da geomorfologia de Portugal.
Aquisição de conhecimentos teóricos sobre as leis que regem a distribuição dos elementos químicos nos processos geoquímicos naturais; resolução de casos práticos de tratamento de dados analíticos que permitam caracterizar a evolução primária e o efeito de processos geoquímicos secundários; compreensão dos efeitos da intervenção do homem no equilíbrio do ambiente natural a partir do estudo da mobilidade e dispersão dos elementos
Dotar os alunos com as competências necessárias à resolução de problemas geológicos por recurso a ferramentas informáticas.
Transmitir os princípios e técnicas do estudo dos minerais (os minerais como ferramentas importantes para o estudo da petrologia). A petrologia visa estabelecer as leis que regem a formação, evolução e implantação dos diferentes tipos de rochas bem como as suas relações com a dinâmica global do planeta.
Reconhecer a importância do Património Geológico como recurso natural a preservar, valorizar e divulgar; Conhecer a legislação existente sobre planeamento e gestão do património geológico a nível nacional e internacional; Contactar com diferentes exemplos de geoconservação em Portugal
Compreensão das características e dos contextos de génese das rochas metamórficas, e respetiva integração geotectónica.
O ensino desta unidade curricular tem como principal objetivo a aquisição de conhecimentos, respetiva integração, compreensão e interpretação sobre a génese e a evolução geológica e estrutural das distintas unidades geotectónicas e estratigráficas que reconhecemos em Portugal e na Península Ibérica, com a devida correlação às unidades equivalentes que se situam noutros locais do mundo, numa perspectiva temporal e multidisciplinar que abrange conhecimentos nas diversas áreas das Ciências Geológicas. As aulas práticas têm como objetivo principal o conhecimento e a interpretação geológica e estrutural da cartografia geológica, e de observações efetuadas em aulas de campo.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Compreensão dos processos e princípios envolvidos na génese das rochas ígneas numa integração geotectónica.
Aquisição de conhecimentos teóricos e práticos essenciais para a compreensão e interpretação integrada dos processos envolvidos na génese das rochas sedimentares e dos solos.
Como resultados da aprendizagem e competências, pretende-se que os estudantes sejamcapazes de:
- enquadrar as rochas sedimentares no contexto da dinâmica dos processos geológicos;
- compreender a diferenciação sedimentar/pedológica;
- interpretar os processos de meteorização, transporte a deposição dos sedimentos que formam as rochas;
- compreender as condições fisico-químicas associadas aos ambientes onde se depositaram os sedimentos que dão origem às rochas sedimentares;
- conhecer os processos diagenéticos associados à génese das rochas sedimentares;
- descrever e classificar as rochas sedimentares.
A Célula é a unidade fundamental da vida, e o conhecimento da sua fisiologia constitui a base onde se apoia toda a Biologia e as suas aplicações, como a Medicina moderna. O objetivo desta UC é dar a conhecer aos alunos a Biologia da Célula a nível geral, incluindo as suas estruturas e processos funcionais principais, e respetivas bases moleculares, assim como as metodologias experimentais utilizadas para contruir esse conhecimento.
Adquirir os conhecimentos de base na área da Ecologia e saber utilizá-los para interpretar e intervir em situações concretas.
Fornecimento de bases teóricas e práticas para a compreensão da organização e fisiologia dos principais sistemas animais
Aprendizagem dos princípios essenciais relacionados com as várias áreas da genética: genética mendeliana, citogenética, genética molecular, genética populacional e genética quantitativa, com especial atenção nas possíveis aplicações dos vários conceitos e métodos de análise.
Fornecer conhecimentos básicos sobre a biologia dos principais grupos de animais invertebrados e vertebrados.
Esta unidade curricular tem por objectivo proporcionar aos estudantes uma visão geral da diversidade e evolução de: fungos, protistas e plantas. A abordagem ao Reino Plantae inclui o conceito de alternância de gerações no seu ciclo de vida, o estudo da morfologia de famílias selecionadas, das suas estruturas vegetativas e reprodutivas, das características anatómicas internas, uma introdução à fisiologia vegetal, incluindo as relações hídricas e transporte interno, e ainda classificação dos grandes grupos vegetais de acordo com as suas relações filogenéticas.
Sendo as plantas organismos complexos, o curso centra-se especialmente nos processos bioquímicos e moleculares envolvidos no crescimento e desenvolvimento das plantas. É também objetivo do curso que o estudante compreenda o modo como as plantas interatuam com o meio ambiente.
Abordar alguns tópicos fundamentais da biologia das bactérias, focando as suas estruturas vegetativas e reprodutoras, genética, ecologia e a sistemática e taxonomia.
Executar e discutir trabalhos práticos relacionados com a biologia destes organismos.
No final da disciplina, os alunos com aproveitamento deverão possuir noções fundamentais sobre a biologia das bactérias e saber executar experiências básicas nesta área.
A disciplina de Toxicologia Geral visa fornecer conhecimentos básicos nesta área. Pretende-se referir e analisar a importância dos principais poluentes. Pretende-se ainda formar e informar os alunos sobre as principais questões de toxicologia geral no âmbito nacional e internacional. Serão ainda objectivos fundamentais desta disciplina o fornecimento de conceitos teóricos importantes em toxicologia geral, nomeadamente no que diz respeito ao processo de intoxicação, aos efeitos tóxicos em diferentes sistemas de órgãos, às metodologias de planeamento experimental, de quantificação e de aplicação dos resultados a situações reais de avaliação de risco. Far-se-á referência ás principais aplicações da Toxicologia.
Habilitar os alunos com conhecimentos básicos sobre etapas fundamentais relativas à origem e evolução do homem, e com um quadro conceptual que lhes permita compreender os padrões de diversidade biológica e genética das populações humanas contemporâneas. Familiarizá-los com ferramentas de análise em investigação antropológica.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Pretende-se que com base nos conhecimentos e experiência obtidas com a frequência desta disciplina, os alunos adquiram competências que lhes permitam intervir nas várias temáticas relacionadas com a Microbiologia Alimentar. Espera-se ainda que os alunos compreendam a importância das matérias abordadas para a indústria alimentar e numa perspectiva de saúde pública.
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções com o meio exterior, e a forma de avaliar o seu desempenho.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Introdução à utilização de computadores com sistema operativo GNU/Linux.
Introdução à programação de computadores usando a linguagem Python.
Noção de linguagens de baixo nivel e alto nível; interpretadores e compiladores; editores e ambientes de desenvolvimento. Valores, tipos e expressões. Funções e procedimentos. Condições e seleção. Iteração e recursão. Estruturas de dados básicas: listas, tuplos e dicionários. Traçado de gráficos.
Introdução à programa imperativa usando a linguagem C. Estudo e implementação de estruturas de dados e algoritmos fundamentais (computação numérica, variáveis indexadas, pesquisa e ordenação).
Introdução à utilização de ferramentas de desenvolvimento num sistema GNU/Linux: editor de texto, compilador e "debugger".
Introdução à especificação informal de componentes de programas (e.g. functions); utilização de ferramentas de testes automáticos para deteção e correção de erros em programas.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
O estudante deverá ser capaz de:
- compreender, utilizar e desenvolver programas com tipos abstratos de dados (TAD) de acordo com os requisitos de problemas propostos;
- compreender e utilizar as noções de atributo e método de um tipo abstrato de dados;
- utilizar e adaptar, programando-os, TADs que implementam listas ligadas, pilhas, filas, árvores binárias, heaps, tabelas de hash e grafos;
- analisar trechos de algoritmos do ponto de vista da complexidade computacional e situá-los numa ordem de complexidade;
- programar funções recursivas;
- programar e analisar algoritmos de procura e inserção sequencial, em lista ordenada, em árvore ordenada e em tabela de hash;
- programar e analisar algoritmos de ordenação tais como o bubblesort, mergesort, quicksort e heapsort;
- programar e analisar algoritmos de criação e manipulação de estruturas de dados como árvores binárias, árvores binárias ordenadas, heaps e grafos.
Nota: nesta unidade curricular a programação é feita utilizando a linguagem Python.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.
A disciplina de Introdução à Química dos Materiais é uma unidade curricular destinada a alunos do primeiro ciclo dos cursos da Faculdade de Ciências da Universidade de Porto. Trata-se de uma disciplina de carácter introdutório e generalista que versa a estrutura interna das várias classes de materiais (a diferentes escalas, desde a escala atómico-molecular à macroscópica), as propriedades químicas, físicas e mecânicas diferenciadoras dos materiais, e, ainda, a sua função e aplicação prática.
Pretende-se desenvolver nos alunos a capacidade de compreensão e descrição dos diferentes procedimentos analíticos habitualmente usados em análise química, identificando os seus aspectos comuns e mostrando as suas características particulares que os tornam específicos para aplicações analíticas. Assimilação e integração de conceitos e de características de modo a proporcionar uma visão abrangente dos processos baseados no equilíbrio heterógeneo, em particular, os processos de separação física e química. Proporcionar a aquisição de conhecimentos sobre análise volumétrica.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Desenvolvimento de competências laboratoriais na síntese e caracterização de compostos inorgânicos recorrendo a operações unitárias laboratoriais. Utilização de recursos informáticos e técnicas instrumentais de caracterização (condutimetria, espectroscopia de UV/vis, espectroscopia de FTIR-ATR, fluorescência). Aquisição de capacidade de adaptação a situações novas e de interpretação de resultados. Desenvolvimento de capacidades de comunicação em ciência.
1 Execução de algumas técnicas básicas (de purificação / identificação) comuns em Química Orgânica; 2 Execução laboratorial da síntese de compostos orgânicos; 3 Desenvolvimento da capacidade de uma análise crítica dos resultados obtidos; 4 Elaboração de um relatório científico; 5Desenvolvimento de alguma autonomia no laboratório.
Esta unidade curricular tem como objetivo principal apresentar uma visão coerente e integrada dos fundamentos químicos dos principais fenómenos biológicos, começando por uma descrição das bases moleculares da vida e prosseguindo pela descrição e racionalização físico-química de processos biológicos vitais e grandes vias metabólicas dos seres vivos.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Integração dos conhecimentos adquiridos nas unidades curriculares de Química Analítica e Introdução ao processo analítico na prática laboratorial de processos volumétricos, de separação física e de métodos potenciométricos e espectrofotométricos, através da execução de diversos trabalhos práticos. Desenvolvimento de capacidades de execução laboratorial, registo sistemático, interpretação de resultados experimentais e sua avaliação crítica.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Pretende-se proporcionar formação científica em Química Ambiental:
aplicar os princípios químicos à compreensão dos fenómenos ambientais, sem esquecer o papel dos organismos vivos nesses mesmos fenómenos; compreender os processos que têm lugar nos diversos compartimentos ambientais e o modo como a atividade humana interage com os processos naturais; combinar a aplicação dos princípios químicos ao maior desafio que hoje se põe à humanidade – a recuperação, manutenção e a melhoria da qualidade do ambiente.
Pretende-se também melhorar a capacidade de interpretar textos, encontrar informação, sintetizar e transmitir conhecimentos no âmbito da Química Ambiental e adquirir uma visão global da Química Ambiental.
O objetivo fundamental desta disciplina é a lecionação de alguns tópicos fundamentais da Química Física, em continuação dos ensinamentos que o aluno deverá ter adquirido nas unidades curriculares Química I e Química II, no ano letivo transato. O programa curricular adotado para a Licenciatura em Química contém um único semestre obrigatório de Química Física, o que sendo manifestamente muito pouco, obriga à escolha de alguns tópicos fundamentais deste ramo da Química, mesmo que tratados numa extensão relativamente superficial, em detrimento de outros tópicos que, muito embora fundamentais, não há tempo para serem tratados. Assim, escolheram-se como tópicos a serem lecionados a Termodinâmica Química (dado o seu caráter fundamental e aplicabilidade na compreensão de outros tópicos), a Cinética Química (pela sua importância na compreensão de mecanismos dos processos químicos) e uma breve Introdução à Química das Superfícies.
Objetivos:
- Proporcionar o conhecimento das várias famílias de moléculas orgânicas no que diz respeito à sua nomenclatura, reatividade, aos mecanismos das reações em que estão envolvidas e à sua síntese. Munir os alunos de conhecimentos em estereoquímica necessários à análise estrutural das misturas reacionais.
A recolha e a preparação de uma amostra são passos essenciais num procedimento analítico e, apesar disso, são aqueles que o analista poderá estar menos preparado para enfrentar. Com esta disciplina pretende-se minimizar o efeito dos erros de amostragem no resultado final da análise, introduzindo as noções básicas do procedimento de amostragem, apresentando e discutindo as várias estratégias possíveis para a realização da amostragem. Aquisição de conhecimentos sobre os diversos processos de tratamento de amostras directamente relacionados ou não com o método de análise.
Os principais objetivos da disciplina são:
- Domínio de terminologia técnica e científica utilizada na agricultura e agronomia.
- Desenvolver uma visão integrada da agricultura e da sua multifuncionalidade.
- Conhecer a relevância económica da agricultura
- Fundamentar a integração das operações gerais de cultura com as características do ambiente biofísico, económico e social da exploração agrícola e com a natureza das actividades (produções vegetais e animais), combinando racionalmente os recursos disponíveis em diferentes modos de produção.
- Compreender que a agricultura pelo valor que gera, pelo espaço que ocupa, pela mão-de-obra que requer e pela sua tradição implícita, desempenha um conjunto diversificado de funções com grande impacte na utilização dos recursos naturais, na construção da paisagem e na sociedade, pelo que o design dos agro-sistemas devem basear-se em processos ecologicamente sustentáveis, socialmente responsáveis mas também economicamente eficientes.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Pretende-se que os alunos: - compreendam a filosofia subjacente à tomada de decisão em protecção das culturas nas várias modalidades de agricultura sustentável. - saibam as consequências para uma região ou país do ataque generalizado a uma cultura importante e tomem consciência dos seus deveres na matéria - conheçam e saibam utilizar os componentes da protecção integrada. - saibam quais os principais grupos de inimigos das culturas. - conheçam as características gerais dos fungos agentes causais de doenças de plantas. - saibam classificar um insecto (até à ordem) e saibam como proceder para identificar a espécie. - relacionem os estragos nas plantas com os possíveis agentes causais. - conheçam os meios de luta cultural, biológica, biotécnica e química a usar em Portugal. - adquiram competências de diagnóstico de problemas fitossanitários em diversas plantas.
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Os principais objetivos da disciplina são:
- Domínio de terminologia técnica e científica utilizada na agricultura e agronomia.
- Desenvolver uma visão integrada da agricultura e da sua multifuncionalidade.
- Conhecer a relevância económica da agricultura
- Fundamentar a integração das operações gerais de cultura com as características do ambiente biofísico, económico e social da exploração agrícola e com a natureza das actividades (produções vegetais e animais), combinando racionalmente os recursos disponíveis em diferentes modos de produção.
- Compreender que a agricultura pelo valor que gera, pelo espaço que ocupa, pela mão-de-obra que requer e pela sua tradição implícita, desempenha um conjunto diversificado de funções com grande impacte na utilização dos recursos naturais, na construção da paisagem e na sociedade, pelo que o design dos agro-sistemas devem basear-se em processos ecologicamente sustentáveis, socialmente responsáveis mas também economicamente eficientes.
O objetivo é mostrar algumas das aplicações da álgebra abstracta, nomeadamente da teoria de anéis e corpos.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Complementos sobre o estudo do cálculo diferencial e integral. Análise Vetorial em domínios curvos. Integrais de linha e de superfície. Teoremas integrais da Análise Vectorial.
O teorema da função inversa e o teorema da função implícita e as suas principais aplicações.
Introdução aos métodos de resolução de equações diferenciais ordinárias com incidência especial nas equações e sistemas de equações diferenciais lineares.
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções com o meio exterior, e a forma de avaliar o seu desempenho.
A unidade tem por objetivo fornecer ao estudante as competências base em diferentes áreas da astronomia computacional, permitindo ao estudante saber recorrer aos métodos computacionais e a analisar os resultados numéricos para estudar e interpretar os vários problemas de Astronomia abordados. Para tal, o estudante adquire experiência sobre os métodos, as ferramentas e as aplicações computacionais necessárias para a análise e resolução de alguns problemas comuns da astronomia moderna. O objetivo da componente prática é dotar o estudante com as técnicas e as competências necessárias para que possa resolver computacionalmente um conjunto alargado de problemas de astronomia. Procura-se ainda reforçar a capacidade de validar e interpretar os resultados numéricos através do uso de observações astronómicas relevantes para o problema em estudo.
Fornecer conhecimentos básicos sobre a biologia dos principais grupos de animais invertebrados e vertebrados.
A Célula é a unidade fundamental da vida, e o conhecimento da sua fisiologia constitui a base onde se apoia toda a Biologia e as suas aplicações, como a Medicina moderna. O objetivo desta UC é dar a conhecer aos alunos a Biologia da Célula a nível geral, incluindo as suas estruturas e processos funcionais principais, e respetivas bases moleculares, assim como as metodologias experimentais utilizadas para contruir esse conhecimento.
Esta unidade curricular tem por objectivo proporcionar aos estudantes uma visão geral da diversidade e evolução de: fungos, protistas e plantas. A abordagem ao Reino Plantae inclui o conceito de alternância de gerações no seu ciclo de vida, o estudo da morfologia de famílias selecionadas, das suas estruturas vegetativas e reprodutivas, das características anatómicas internas, uma introdução à fisiologia vegetal, incluindo as relações hídricas e transporte interno, e ainda classificação dos grandes grupos vegetais de acordo com as suas relações filogenéticas.
Familiarizar-se com os conceitos básicos e técnicas do cálculo, a nível de funções reais de uma variável real, bem como sucessões e séries.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Esta disciplina apresenta os principais conceitos, técnicas e aplicações da Deteção Remota, com particular incidência na utilização de imagens de satélites na Observação da Terra. Os alunos terão contacto com imagens de satélite de vários tipos através da realização de trabalhos práticos.
Objectivos A Geologia Estrutural é a ciência (ramo da Geologia) que tem como objectivo o estudo das estruturas (forma e geometria interna e externa) adquiridas pelos corpos rochosos após a sua formação, as suas causas e distribuição geográfica. A Geologia Estrutural avança, não só pela mera descrição das estruturas, mas através da análise rigorosa dessas estruturas e dos mecanismos que as geram. Para se conseguir isto, é necessário recorrer à quantificação, à formulação matemática e ao estabelecimento de modelos físicos. Os objectivos da Geologia Estrutural incluem dois pontos fundamentais: • Definição, caracterização e relação das estruturas observadas e os episódios de deformação; • Caracterização do estado de tensão dominante em cada fase de deformação.
Formular a electrodinâmica com potenciais e conhecer os processos de emissão de ondas electromagnéticas. Conhecer a teoria da relatividade restrita e suas consequências para a cinemática e a dinâmica. Conhecer a formulação relativista do campo electromagnético.
Tendo por base a compreensão dos fenómenos electromagnéticos que suportam o funcionamento dos circuitos eléctricos e da electrónica, pretende-se comunicar os conceitos e estruturas centrais da teoria dos circuitos eléctricos e da electrónica analógica, e transmitir o enquadramento da electrónica digital com descrição dos seus princípios e blocos fundamentais. É também objectivo procurar que a perspectiva da utilização da electrónica na instrumentação esteja sempre presente, assim como situar a evolução histórica deste domínio da Ciência e da Tecnologia e apontar tendências para desenvolvimentos futuros.
Disciplina que trata de dois temas essenciais, a Estratigrafia e a Paleontologia divididos em sub-temas. Pela aplicação dos princípios fundamentais da Estratigrafia e das metodologias clássicas de correlação bem como de outras mais recentes como a análise de fácies, a análise tectonossedimentar e a análise sequencial, e pela caracterização física, química e biológica dos ambientes, processos e produtos sedimentares, enquadrados no contexto geológico e temporal em que ocorrem, objectiva-se o conhecimento e a compreensão de modelos causa/efeito tendo como permuta principal o processo/produto geológico integrado na análise espacial e temporal de bacias sedimentares e respectivas relações com a geodinâmica ao longo dos tempos geológicos Na Paleontologia Geral pretende-se que os alunos adquiram conhecimentos básicos da Paleontologia, nomeadamente sobre as aplicações desta disciplina, métodos e técnicas de investigação, relações com a Estratigrafia e Geohistória, assim como sobre a Sistemática Paleontológica. Os outros sub-temas dizem respeito à Paleozoologia e Paleobotânica e Evolução da Vida na Terra e tem por objectivo fornecer conhecimentos que permitam a identificação dos fósseis mais importantes no estudo da Estratigrafia salientando a sua importância no estabelecimento de biozonas, correlações estratigráficas, interpretação dos ambientes sedimentares, conhecimento da evolução da vida e sua relação com a história da Terra.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
Sendo as plantas organismos complexos, o curso centra-se especialmente nos processos bioquímicos e moleculares envolvidos no crescimento e desenvolvimento das plantas. É também objetivo do curso que o estudante compreenda o modo como as plantas interatuam com o meio ambiente.
Na primeira parte são introduzidos conceitos e ferramentas fundamentais em mecânica de fluídos e são discutidas aplicações da mesma à física e à astrofísica. Na segunda parte tal abordagem é estendida ao estudo de plasmas, com particular ênfase na teoria orbital de plasmas e na magneto-hidrodinâmica (MHD). No final são apresentados alguns exemplos de aplicação da MHD ao sol e outros objetos astronómicos.
Pretende-se que o estudante:
- domine algumas técnicas básicas da álgebra linear (operações com matrizes, resolução de sistemas lineares) e que reconheça algumas das suas aplicações;
- domine algumas técnicas básicas do cálculo diferencial e integral de uma variável (cálculo de derivadas, primitivas e integrais, resolução de equações diferenciais) e que reconheça algumas das suas aplicações.
Aquisição de conceitos básicos e fundamentais sobre os processos geodinâmicos internos e externos, sua interdependência e compreensão dos seus efeitos.
O objetivo deste curso é apresentar os conceitos envolvidos na aplicação da física ao estudo da Terra. Os seguintes tópicos serão abordados durante o curso: Geotermia, Geoelectricidade, Métodos Eletromagnéticos, e Sismologia e a Estrutura Interna da Terra.
Compreender a génese e evolução do relevo/paisagem de Portugal em ligação com o contexto geológico e geotectónico e os processos exógenos.
Identificar e descrever as características das geoformas e sua relação com os processos geomorficos e o clima.
Descrever aspetos relevantes da geomorfologia de Portugal.
Aquisição de conhecimentos teóricos sobre as leis que regem a distribuição dos elementos químicos nos processos geoquímicos naturais; resolução de casos práticos de tratamento de dados analíticos que permitam caracterizar a evolução primária e o efeito de processos geoquímicos secundários; compreensão dos efeitos da intervenção do homem no equilíbrio do ambiente natural a partir do estudo da mobilidade e dispersão dos elementos
Dotar os alunos com as competências necessárias à resolução de problemas geológicos por recurso a ferramentas informáticas.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
A disciplina de Introdução à Química dos Materiais é uma unidade curricular destinada a alunos do primeiro ciclo dos cursos da Faculdade de Ciências da Universidade de Porto. Trata-se de uma disciplina de carácter introdutório e generalista que versa a estrutura interna das várias classes de materiais (a diferentes escalas, desde a escala atómico-molecular à macroscópica), as propriedades químicas, físicas e mecânicas diferenciadoras dos materiais, e, ainda, a sua função e aplicação prática.
Pretende-se desenvolver nos alunos a capacidade de compreensão e descrição dos diferentes procedimentos analíticos habitualmente usados em análise química, identificando os seus aspectos comuns e mostrando as suas características particulares que os tornam específicos para aplicações analíticas. Assimilação e integração de conceitos e de características de modo a proporcionar uma visão abrangente dos processos baseados no equilíbrio heterógeneo, em particular, os processos de separação física e química. Proporcionar a aquisição de conhecimentos sobre análise volumétrica.
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Desenvolvimento de competências laboratoriais na síntese e caracterização de compostos inorgânicos recorrendo a operações unitárias laboratoriais. Utilização de recursos informáticos e técnicas instrumentais de caracterização (condutimetria, espectroscopia de UV/vis, espectroscopia de FTIR-ATR, fluorescência). Aquisição de capacidade de adaptação a situações novas e de interpretação de resultados. Desenvolvimento de capacidades de comunicação em ciência.
1 Execução de algumas técnicas básicas (de purificação / identificação) comuns em Química Orgânica; 2 Execução laboratorial da síntese de compostos orgânicos; 3 Desenvolvimento da capacidade de uma análise crítica dos resultados obtidos; 4 Elaboração de um relatório científico; 5Desenvolvimento de alguma autonomia no laboratório.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Matemática Discreta que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Ao completar esta unidade curricular, o estudante deve dominar os conceitos de derivada, primitiva e integral; deve saber calcular alguns casos de equações diferenciáveis e saber usá-los para modelar situações concretas; e deve compreender e saber trabalhar com o conceito de matriz.
Disciplina introdutória de Probabilidades e Estatística: aquisição dos conceitos fundamentaisde Probabilidades e Estatística e a sua aplicação a situações concretas.
Será dada particular atenção à apresentação e compreensão dos conceitos, mantendo o tratamento matemático num nível elementar.
Abordar alguns tópicos fundamentais da biologia das bactérias, focando as suas estruturas vegetativas e reprodutoras, genética, ecologia e a sistemática e taxonomia.
Executar e discutir trabalhos práticos relacionados com a biologia destes organismos.
No final da disciplina, os alunos com aproveitamento deverão possuir noções fundamentais sobre a biologia das bactérias e saber executar experiências básicas nesta área.
Transmitir os princípios e técnicas do estudo dos minerais (os minerais como ferramentas importantes para o estudo da petrologia). A petrologia visa estabelecer as leis que regem a formação, evolução e implantação dos diferentes tipos de rochas bem como as suas relações com a dinâmica global do planeta.
Reconhecer a importância do Património Geológico como recurso natural a preservar, valorizar e divulgar; Conhecer a legislação existente sobre planeamento e gestão do património geológico a nível nacional e internacional; Contactar com diferentes exemplos de geoconservação em Portugal
Compreensão das características e dos contextos de génese das rochas metamórficas, e respetiva integração geotectónica.
Aquisição dos conceitos básicos de Probabilidades e Estatística e sua aplicação a situações concretas
Esta unidade curricular tem como objetivo principal apresentar uma visão coerente e integrada dos fundamentos químicos dos principais fenómenos biológicos, começando por uma descrição das bases moleculares da vida e prosseguindo pela descrição e racionalização físico-química de processos biológicos vitais e grandes vias metabólicas dos seres vivos.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
Ensinar as bases teóricas e práticas necessárias para lidar com dados geográficos, em termos da sua aquisição, estruturação, manipulação, pesquisa e análise num SIG.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
Introduzir os conceitos e resultados básicos de Teoria de Grupos, quer através da sua concretização nos exemplos clássicos desta estrutura, quer numa perspetiva geral e abstrata.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Ministrar os conhecimentos básicos sobre a instrumentação e métodos a utilizar na recolha e processamento das medidas necessárias à representação do terreno normalmente sob a forma de uma carta ou mapa, segundo os métodos topográficos clássicos.
A disciplina de Toxicologia Geral visa fornecer conhecimentos básicos nesta área. Pretende-se referir e analisar a importância dos principais poluentes. Pretende-se ainda formar e informar os alunos sobre as principais questões de toxicologia geral no âmbito nacional e internacional. Serão ainda objectivos fundamentais desta disciplina o fornecimento de conceitos teóricos importantes em toxicologia geral, nomeadamente no que diz respeito ao processo de intoxicação, aos efeitos tóxicos em diferentes sistemas de órgãos, às metodologias de planeamento experimental, de quantificação e de aplicação dos resultados a situações reais de avaliação de risco. Far-se-á referência ás principais aplicações da Toxicologia.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Introdução à teoria das funções holomorfas por via da teoria de Weierstrass das funções analíticas e pela teoria de Cauchy usando integrais ao longo de caminhos e argumentos .topológicos.
O objetivo desta disciplina é dado, um problema matemático, estudar condições suficientes para a existência e unicidade de solução, escolher um método numérico para a sua resolução, controlar os erros, fornecer um algoritmo a implementar e experimentar em máquina de calcular ou em computador, e interpretar os resultados.
Ao completar esta unidade curricular, o estudante deve saber: os resultados básicos de curvas parametrizadas no plano e no espaço; os resultados fundamentais de análise de funções de várias variáveis e compreender as noções de derivada parcial, gradiente, pontos de máximo e mínimo local, plano tangente ao gráfico de uma função de duas variáveis; os métodos de integração múltipla e ser capaz de os usar na determinação de áreas, volumes, etc, de regiões do plano ou do espaço recorrendo, se necessário, a mudança de variáveis.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
A disciplina tem por objectivo fornecer as competências base em astrofísica estelar, tanto em termos de conceitos como de ferramentas físico/matemáticas relevantes para a Astronomia. Com esta formação procura-se assegurar que o estudante adquire a capacidade de compreender o que é uma estrela e de quer forma os dados observacionais nos permitem estudar a física fundamental que determina o seu comportamento. A abordagem é a um nível intermédio em que paralelamente à clarificação de conceitos é dada ênfase à fundamentação dos mesmos em termos formais. Procura-se dessa forma desenvolver a compreensão de conceitos globais em astrofísica estelar e a capacidade de os relacionar, incluindo-se nomeadamente a descrição de conceitos e fenómenos físicos que ocorrem no interior e atmosferas de estrelas e aqueles que são relevantes para descrever a formação estelar.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Pretende-se que os alunos: - compreendam a filosofia subjacente à tomada de decisão em protecção das culturas nas várias modalidades de agricultura sustentável. - saibam as consequências para uma região ou país do ataque generalizado a uma cultura importante e tomem consciência dos seus deveres na matéria - conheçam e saibam utilizar os componentes da protecção integrada. - saibam quais os principais grupos de inimigos das culturas. - conheçam as características gerais dos fungos agentes causais de doenças de plantas. - saibam classificar um insecto (até à ordem) e saibam como proceder para identificar a espécie. - relacionem os estragos nas plantas com os possíveis agentes causais. - conheçam os meios de luta cultural, biológica, biotécnica e química a usar em Portugal. - adquiram competências de diagnóstico de problemas fitossanitários em diversas plantas.
Habilitar os alunos com conhecimentos básicos sobre etapas fundamentais relativas à origem e evolução do homem, e com um quadro conceptual que lhes permita compreender os padrões de diversidade biológica e genética das populações humanas contemporâneas. Familiarizá-los com ferramentas de análise em investigação antropológica.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Adquirir os conhecimentos de base na área da Ecologia e saber utilizá-los para interpretar e intervir em situações concretas.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
. adquirir conhecimentos e competências que permitam perceber os desenvolvimentos atuais em Fisica Nuclear e em Física de Partículas.
. aprender a fundamentação teórica dos modelos nucleares e de partículas.
. conhecer de resultados experimentais em Fisica Nuclear e em Física de Partículas.
. desenvolver a capacidade de resolução de problemas.
Fornecimento de bases teóricas e práticas para a compreensão da organização e fisiologia dos principais sistemas animais
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
Mostrar como o raciocínio estatístico é usado na investigação nas áreas das ciências da vida e habilitar os estudantes a realizarem análises estatísticas simples e a interpretarem os resultados. É dada particular atenção à compreensão dos conceitos, e à utilização crítica dos métodos, mantendo o tratamento matemático num nível elementar.
|
Aprendizagem dos princípios essenciais relacionados com as várias áreas da genética: genética mendeliana, citogenética, genética molecular, genética populacional e genética quantitativa, com especial atenção nas possíveis aplicações dos vários conceitos e métodos de análise.
O ensino desta unidade curricular tem como principal objetivo a aquisição de conhecimentos, respetiva integração, compreensão e interpretação sobre a génese e a evolução geológica e estrutural das distintas unidades geotectónicas e estratigráficas que reconhecemos em Portugal e na Península Ibérica, com a devida correlação às unidades equivalentes que se situam noutros locais do mundo, numa perspectiva temporal e multidisciplinar que abrange conhecimentos nas diversas áreas das Ciências Geológicas. As aulas práticas têm como objetivo principal o conhecimento e a interpretação geológica e estrutural da cartografia geológica, e de observações efetuadas em aulas de campo.
Os estudantes devem adquirir conhecimentos sobre a aplicação de métodos do cálculo diferencial e integral ao estudo da geometria com ênfase na geometria diferencial das superfícies. Devem ser capazes de aplicar estes conhecimentos de forma independente à analise e resolução de problemas matemáticos quando os métodos da geometria diferencial são relevantes.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Integração dos conhecimentos adquiridos nas unidades curriculares de Química Analítica e Introdução ao processo analítico na prática laboratorial de processos volumétricos, de separação física e de métodos potenciométricos e espectrofotométricos, através da execução de diversos trabalhos práticos. Desenvolvimento de capacidades de execução laboratorial, registo sistemático, interpretação de resultados experimentais e sua avaliação crítica.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.
Domínio dos formalismos clássicos da mecânica analítica e da sua aplicação a problemas de mecânica clássica. Nesta linha expõe-se o estudante às noções de simetria e algebrização na descrição do movimento, como forma introdutória a conceitos a serem desenvolvidos em cadeiras sobre Mecânica Quântica.
Pretende-se familiarizar o aluno com a leitura de cartas militares e de cartas geológicas a diversas escalas. Pretende-se que o aluno fique habilitado a realizar perfis geológicos em cartas geológicas de uso corrente, bem como que o aluno consiga resolver problemas simples de geologia em mapas geológicos. Pretende dar as bases para a interpretação fotogeológica de uma área. Pretende-se que o aluno conheça os princípios da realização de um levantamento geológico no terreno.
Pretende-se que com base nos conhecimentos e experiência obtidas com a frequência desta disciplina, os alunos adquiram competências que lhes permitam intervir nas várias temáticas relacionadas com a Microbiologia Alimentar. Espera-se ainda que os alunos compreendam a importância das matérias abordadas para a indústria alimentar e numa perspectiva de saúde pública.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
Compreensão dos processos e princípios envolvidos na génese das rochas ígneas numa integração geotectónica.
Aquisição de conhecimentos teóricos e práticos essenciais para a compreensão e interpretação integrada dos processos envolvidos na génese das rochas sedimentares e dos solos.
Como resultados da aprendizagem e competências, pretende-se que os estudantes sejamcapazes de:
- enquadrar as rochas sedimentares no contexto da dinâmica dos processos geológicos;
- compreender a diferenciação sedimentar/pedológica;
- interpretar os processos de meteorização, transporte a deposição dos sedimentos que formam as rochas;
- compreender as condições fisico-químicas associadas aos ambientes onde se depositaram os sedimentos que dão origem às rochas sedimentares;
- conhecer os processos diagenéticos associados à génese das rochas sedimentares;
- descrever e classificar as rochas sedimentares.
Pretende-se proporcionar formação científica em Química Ambiental:
aplicar os princípios químicos à compreensão dos fenómenos ambientais, sem esquecer o papel dos organismos vivos nesses mesmos fenómenos; compreender os processos que têm lugar nos diversos compartimentos ambientais e o modo como a atividade humana interage com os processos naturais; combinar a aplicação dos princípios químicos ao maior desafio que hoje se põe à humanidade – a recuperação, manutenção e a melhoria da qualidade do ambiente.
Pretende-se também melhorar a capacidade de interpretar textos, encontrar informação, sintetizar e transmitir conhecimentos no âmbito da Química Ambiental e adquirir uma visão global da Química Ambiental.
O objetivo fundamental desta disciplina é a lecionação de alguns tópicos fundamentais da Química Física, em continuação dos ensinamentos que o aluno deverá ter adquirido nas unidades curriculares Química I e Química II, no ano letivo transato. O programa curricular adotado para a Licenciatura em Química contém um único semestre obrigatório de Química Física, o que sendo manifestamente muito pouco, obriga à escolha de alguns tópicos fundamentais deste ramo da Química, mesmo que tratados numa extensão relativamente superficial, em detrimento de outros tópicos que, muito embora fundamentais, não há tempo para serem tratados. Assim, escolheram-se como tópicos a serem lecionados a Termodinâmica Química (dado o seu caráter fundamental e aplicabilidade na compreensão de outros tópicos), a Cinética Química (pela sua importância na compreensão de mecanismos dos processos químicos) e uma breve Introdução à Química das Superfícies.
Objetivos:
- Proporcionar o conhecimento das várias famílias de moléculas orgânicas no que diz respeito à sua nomenclatura, reatividade, aos mecanismos das reações em que estão envolvidas e à sua síntese. Munir os alunos de conhecimentos em estereoquímica necessários à análise estrutural das misturas reacionais.
A recolha e a preparação de uma amostra são passos essenciais num procedimento analítico e, apesar disso, são aqueles que o analista poderá estar menos preparado para enfrentar. Com esta disciplina pretende-se minimizar o efeito dos erros de amostragem no resultado final da análise, introduzindo as noções básicas do procedimento de amostragem, apresentando e discutindo as várias estratégias possíveis para a realização da amostragem. Aquisição de conhecimentos sobre os diversos processos de tratamento de amostras directamente relacionados ou não com o método de análise.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Esta disciplina apresenta os principais conceitos, técnicas e aplicações da Deteção Remota, com particular incidência na utilização de imagens de satélites na Observação da Terra. Os alunos terão contacto com imagens de satélite de vários tipos através da realização de trabalhos práticos.
Ensinar as bases teóricas e práticas necessárias para lidar com dados geográficos, em termos da sua aquisição, estruturação, manipulação, pesquisa e análise num SIG.
Ministrar os conhecimentos básicos sobre a instrumentação e métodos a utilizar na recolha e processamento das medidas necessárias à representação do terreno normalmente sob a forma de uma carta ou mapa, segundo os métodos topográficos clássicos.
|
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Complementos sobre o estudo do cálculo diferencial e integral. Análise Vetorial em domínios curvos. Integrais de linha e de superfície. Teoremas integrais da Análise Vectorial.
O teorema da função inversa e o teorema da função implícita e as suas principais aplicações.
Introdução aos métodos de resolução de equações diferenciais ordinárias com incidência especial nas equações e sistemas de equações diferenciais lineares.
Introdução os métodos de resolução de equações diferenciais ordinárias com incidência especial nas equações e sistemas de equações diferenciais lineares. Superfícies regulares de R^3, Integrais de linha e integrais de superfície. Teoremas clássicos de Análise Vectorial: Teoremas de Green, de Gauss da divergência e de Stokes
Disciplina introdutória de Probabilidades e Estatística: aquisição dos conceitos fundamentaisde Probabilidades e Estatística e a sua aplicação a situações concretas.
Será dada particular atenção à apresentação e compreensão dos conceitos, mantendo o tratamento matemático num nível elementar.
Aquisição dos conceitos básicos de Probabilidades e Estatística e sua aplicação a situações concretas
Introduzir os conceitos e resultados básicos de Teoria de Grupos, quer através da sua concretização nos exemplos clássicos desta estrutura, quer numa perspetiva geral e abstrata.
Introdução à teoria das funções holomorfas por via da teoria de Weierstrass das funções analíticas e pela teoria de Cauchy usando integrais ao longo de caminhos e argumentos .topológicos.
Ao completar esta unidade curricular, o estudante deve saber: os resultados básicos de curvas parametrizadas no plano e no espaço; os resultados fundamentais de análise de funções de várias variáveis e compreender as noções de derivada parcial, gradiente, pontos de máximo e mínimo local, plano tangente ao gráfico de uma função de duas variáveis; os métodos de integração múltipla e ser capaz de os usar na determinação de áreas, volumes, etc, de regiões do plano ou do espaço recorrendo, se necessário, a mudança de variáveis.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
O objetivo é mostrar algumas das aplicações da álgebra abstracta, nomeadamente da teoria de anéis e corpos.
Ao completar esta unidade curricular, o estudante deve saber e compreender: a resolução e discussão de sistemas de equações lineares usando o método de Gauss , recorrendo à notação matricial dos sistemas; algumas das propriedades mais importantes no cálculo do determinante de uma matriz quadrada, usando-as de acordo com a matriz que lhe é apresentada, e conhecendo em particular a sua interpretação em termos de áreas e volumes; os conceitos básicos e resultados fundamentais relativos a espaços vetoriais e a aplicações lineares entre espaços vetoriais de dimensão finita.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Familiarizar-se com os conceitos básicos e técnicas do cálculo, a nível de funções reais de uma variável real, bem como sucessões e séries.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Pretende-se que o estudante:
- domine algumas técnicas básicas da álgebra linear (operações com matrizes, resolução de sistemas lineares) e que reconheça algumas das suas aplicações;
- domine algumas técnicas básicas do cálculo diferencial e integral de uma variável (cálculo de derivadas, primitivas e integrais, resolução de equações diferenciais) e que reconheça algumas das suas aplicações.
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Matemática Discreta que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Ao completar esta unidade curricular, o estudante deve dominar os conceitos de derivada, primitiva e integral; deve saber calcular alguns casos de equações diferenciáveis e saber usá-los para modelar situações concretas; e deve compreender e saber trabalhar com o conceito de matriz.
Introduzir os conceitos e resultados básicos de Teoria de Grupos, quer através da sua concretização nos exemplos clássicos desta estrutura, quer numa perspetiva geral e abstrata.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Introdução à teoria das funções holomorfas por via da teoria de Weierstrass das funções analíticas e pela teoria de Cauchy usando integrais ao longo de caminhos e argumentos .topológicos.
O objetivo desta disciplina é dado, um problema matemático, estudar condições suficientes para a existência e unicidade de solução, escolher um método numérico para a sua resolução, controlar os erros, fornecer um algoritmo a implementar e experimentar em máquina de calcular ou em computador, e interpretar os resultados.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Os estudantes devem adquirir conhecimentos sobre a aplicação de métodos do cálculo diferencial e integral ao estudo da geometria com ênfase na geometria diferencial das superfícies. Devem ser capazes de aplicar estes conhecimentos de forma independente à analise e resolução de problemas matemáticos quando os métodos da geometria diferencial são relevantes.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Efetuar a concepção e planeamento de experiências.
Conduzir pesquisas de literatura, incluindo análise crítica de artigos técnicos, e expressão oral e escrita.
Planear a automatização de experiências usando LabVIEW como ferramenta de controlo, aquisição e processamento.
Desenvolver miniprojectos com temática bem definida, utilizando quando possível ferramentas de LabVIEW.
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.