Abstract (EN):
The build-up of biofilms on metals surfaces may lead to severe corrosion, especially in the presence of sulphate-reducing bacteria (SRB). To prevent the deterioration of material caused by biofilms it is necessary to understand the processes governing biofilm development including mechanisms of cell adhesion. Additionally, corrosion of metallic surfaces due to bacteria may lead to the dissolution of metallic elements that may further affect adhesion and biofilm development. A study was carried out to evaluate how the presence of nickel in the substrata affects the adhesion ability of Desulfovibrio desulfuricans. The substrata tested were stainless steel 304 (SS), metallic nickel (Ni) and polymethylmetacrylate (PMMA), a non-metallic material used as control. The influence of nickel on SRB growth and its relation to adhesion was also checked. A statistically significant difference in the number of adhered cells to the materials tested was detected, with higher bacterial number on nickel, followed by SS and finally by PMMA. The higher number of SRB adhered to steel compared with PMMA may be explained by differences in hydrophobicity, in roughness and in the electron-acceptor character of the substrata. Additionally, bacterial growth was found to be positively affected by the presence of nickel as revealed by a significant increase in the specific growth rate of SRB in the presence of increased nickel concentrations.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Contacto:
Luis F. Melo
Nº de páginas:
7