Saltar para:
Logótipo
Você está em: Início » Publicações » Visualização » Free periodic vibrations of beams with large displacements and initial plastic strains

Free periodic vibrations of beams with large displacements and initial plastic strains

Título
Free periodic vibrations of beams with large displacements and initial plastic strains
Tipo
Artigo em Revista Científica Internacional
Ano
2010
Autores
Pedro Leal Ribeiro
(Autor)
FEUP
Revista
Vol. 52
Páginas: 1407-1418
ISSN: 0020-7403
Editora: Elsevier
Indexação
Publicação em ISI Web of Science ISI Web of Science
COMPENDEX
INSPEC
Classificação Científica
FOS: Ciências da engenharia e tecnologias > Engenharia mecânica
Outras Informações
ID Authenticus: P-003-1E6
Abstract (EN): This paper intends to analyse free vibrations of beams in the geometrically non-linear regime and with plastic strains. The specific goal is to find how plastic strains combined with large displacements influence the non-linear modes of vibration, by analysing the influence of the former two factors in mode shapes and natural frequencies of vibration. The geometrical non-linearity is represented by the Von Karman type strain-displacement relations. A stress-strain relation of the bilinear type, with isotropic strain hardening, is assumed, the Von Mises yield criterion is employed and the flow theory of plasticity applied. To obtain the time domain ordinary differential equations of motion the principle of virtual work is used and a Timoshenko p-version finite element model with hierarchical basis functions is adopted. The equations of motion are naturally different from the usual large displacement equations. due to the appearance of matrices and vectors related with plastic terms. In the cases studied, plastic strains are imposed on the beam by equally distributed static forces; the forces are then removed and a study on the free vibrations is carried out. It is assumed that, once defined, the plastic strain field does not change. The time domain equations are transformed to the frequency domain by the harmonic balance method and these frequency domain equations are solved by an arc-length continuation method. The variations of mode shapes of vibration and of natural frequencies with vibration amplitude are investigated. It is found that the plastic strain distribution defines if and how much softening spring effect occurs. Hardening spring effect always appears, but with some plastic strain fields hardening spring takes place only at large vibration amplitudes. Plastic deformations also have an important effect in the vibration shapes.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Modelação por Desacoplamento Dinâmico (1994)
Tese
Pedro Leal Ribeiro; Sem Nome
Non-linear dynamics of structures and mechanical systems (2006)
Outra Publicação em Revista Científica Internacional
Pedro Leal Ribeiro; Topping, BHV; Soares, CAM
Non-Linear Dynamics of Micro- and Nano- Electro-Mechanical Systems (2020)
Outra Publicação em Revista Científica Internacional
Pedro Leal Ribeiro; Stefano Lenci; Sondipon Adhikari
International Journal of Mechanical Sciences: Editorial (2010)
Outra Publicação em Revista Científica Internacional
José Antunes; Pedro Leal Ribeiro

Ver todas (221)

Da mesma revista

International Journal of Mechanical Sciences: Editorial (2010)
Outra Publicação em Revista Científica Internacional
José Antunes; Pedro Leal Ribeiro
Thermo-Elasto-Viscoplastic Numerical Model for Metal Casting Processes (2004)
Artigo em Revista Científica Internacional
Paulo M. M. Vila Real; Carlos A. M. Oliveira; José T. Barbosa
Thermoelastic, Large Amplitude Vibrations of Timoshenko Beams (2004)
Artigo em Revista Científica Internacional
Emil Manoach; Pedro Leal Ribeiro
Polyharmonic (thin-plate) splines in the analysis of composite plates (2004)
Artigo em Revista Científica Internacional
António Ferreira
Optimizing a meshless method for the simulation of the extrusion of non-Newtonian materials (2021)
Artigo em Revista Científica Internacional
Costa, ROSS; Belinha, J; Renato Natal Jorge; Rodrigues, DES

Ver todas (26)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-05 às 10:31:21
Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital