Abstract (EN):
The interrogation of optic fiber sensors usually relies in complex and costly equipment with low portability due to their size such as Optical Spectrum Analyzers (OSA) or high-resolution spectrometers. Because of this, micro spectrometer devices, such as Micro-Electromechanical Systems (MEMS) with Fabry-Pérot tunable filters, are emerging as simpler and compact alternatives capable of being used to acquire spectral information in a wide wavelength band. In this work it is described the development of an interrogation system capable of infrared spectroscopy using a MEMS Fabry-Pérot Interferometer (MEMS-FPI) with a spectral response in the 1350nm to 1650nm range. Its performance is tested with the interrogation of long period fiber gratings both as a refractive index sensor and as a temperature sensor. Deconvolution techniques such as Wiener filtering are used to reduce the impact of the tunable filter's impulse response in the measured signal. Results are comparable to those obtained using a typical OSA which shows the system's potential as a cheaper and more transportable alternative. © Published under licence by IOP Publishing Ltd.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica