Abstract (EN):
Although the lipophilic triphenylphosphonium (TPP+) cation is widely used to target antioxidants to mitochondria, TPP+- based derivatives have shown cytotoxicity in several biological in vitro models. We confirmed that Mito.TPP is cytotoxic to both human neuronal (SH-SY5Y) and hepatic (HepG2) cells, decreasing intra-cellular adenosine triphosphate (ATP) levels, leading to mitochondrial membrane depolarization and reduced mitochondrial mass after 24 h. We surpassed this concern using nitrogen-derived cationic carriers (Mito.PICO, Mito.ISOQ, and Mito.IMIDZ). As opposed to Mito.TPP, these novel compounds were not cytotoxic to SH-SY5Y and HepG2 cells up to 50 mu M and after 24 h of incubation. All of the cationic derivatives accumulated inside the mitochondrial matrix and acted as neuroprotective agents against iron(III), hydrogen peroxide, and tert-butyl hydroperoxide insults. The overall data showed that nitrogen-based cationic carriers can modulate the biological performance of mitochondria-directed antioxidants and are an alternative to the TPP cation.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
17