Abstract (EN):
A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1 , a limit of detection (LOD) < 19.9 amol L-1 , and a sensitivity of 13.4 +/- 0.6 m.. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg(-1) ) of hazelnut in wheat material (corresponding to 1.6 mg kg(-1) of protein) and a sensitivity of 17.2 +/- 0.5 m. for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
11