Go to:
Logótipo
Você está em: Start » Publications » View » Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy
Publication

Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy

Title
Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy
Type
Article in International Scientific Journal
Year
2023
Authors
Ferraz Caetano, J
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Teixeira, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Natalia N D S Cordeiro
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Y-X5W
Abstract (EN): Many challenges persist in developing accurate computationalmodelsfor predicting solvation free energy (& UDelta;G (sol)). Despite recent developments in Machine Learning (ML)methodologies that outperformed traditional quantum mechanical models,several issues remain concerning explanatory insights for broad chemicalpredictions with an acceptable speed-accuracy trade-off. Toovercome this, we present a novel supervised ML model to predict the & UDelta;G (sol) for an array of solvent-solutepairs. Using two different ensemble regressor algorithms, we madefast and accurate property predictions using open-source chemicalfeatures, encoding complex electronic, structural, and surface areadescriptors for every solvent and solute. By integrating molecularproperties and chemical interaction features, we have analyzed individualdescriptor importance and optimized our model though explanatory informationform feature groups. On aqueous and organic solvent databases, MLmodels revealed the predictive relevance of solutes with increasingpolar surface area and decreasing polarizability, yielding betterresults than state-of-the-art benchmark Neural Network methods (withoutcomplex quantum mechanical or molecular dynamic simulations). Bothalgorithms successfully outperformed previous & UDelta;G (sol) predictions methods, with a maximum absolute errorof 0.22 & PLUSMN; 0.02 kcal mol(-1), further validatedin an external benchmark database and with solvent hold-out tests.With these explanatory and statistical insights, they allow a thoughtfulapplication of this method for predicting other thermodynamic properties,stressing the relevance of ML modeling for further complex computationalchemistry problems.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

VMD Store-A VMD Plugin to Browse, Discover, and Install VMD Extensions (2019)
Article in International Scientific Journal
Fernandes, HS; Sergio Filipe Sousa; Nuno M F S A Cerqueira
Unraveling the Reaction Mechanism of Russell?s Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? (2023)
Article in International Scientific Journal
Castro-Amorim, J; Oliveira, A; Mukherjee, AK; Ramos, MJ; Pedro A Fernandes
Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to the Dopamine Receptor Family (2020)
Article in International Scientific Journal
Preto, AJ; Barreto, CAV; Baptista, SJ; de Almeida, JG; Lemos, A; Andre Melo; Natalia N D S Cordeiro; Kurkcuoglu, Z; Melo, R; Moreira, IS
Two New Parameters Based on Distances in a Receiver Operating Characteristic Chart for the Selection of Classification Models (2011)
Article in International Scientific Journal
Alfonso Perez Garrido; Aliuska M Morales Helguera; Fernanda Borges; Natalia N D S Cordeiro; Virginia Rivero; Amalio G Garrido Escudero

See all (25)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-11-07 at 08:11:23
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital