Go to:
Logótipo
Você está em: Start » Publications » View » Random Linear Network Coding for Time Division Duplexing: When To Stop Talking And Start Listening
Publication

Random Linear Network Coding for Time Division Duplexing: When To Stop Talking And Start Listening

Title
Random Linear Network Coding for Time Division Duplexing: When To Stop Talking And Start Listening
Type
Article in International Conference Proceedings Book
Year
2009
Authors
Daniel E. Lucani
(Author)
FEUP
Milica Stojanovic
(Author)
FEUP
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Muriel Médard
(Author)
FEUP
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Pages: 1800-1808
IEEE Infocom 2009, Rio de Janeiro, Brazil, April 2009
Rio de Janeiro, Brazil, April 2009, April 2009
Scientific classification
FOS: Engineering and technology > Electrical engineering, Electronic engineering, Information engineering
CORDIS: Technological sciences > Engineering > Communication engineering > Telecommunications engineering
Other information
Resumo (PT): A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex go-back-N and selective repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the selective repeat in most cases and considerable performance gain when latency and packet error probability is high.
Abstract (EN): A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex go-back-N and selective repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the selective repeat in most cases and considerable performance gain when latency and packet error probability is high.
Language: English
Type (Professor's evaluation): Scientific
Contact: Daniel E. Lucani (dlucani@fe.up.pt)
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Underwater Acoustic Networks: Channel Models and Network Coding based Lower Bound to Transmission Power for Multicast (2008)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
On Coding for Delay - Network Coding for Time Division Duplexing (2012)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
Capacity Scaling Laws for Underwater Networks (2012)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
Random Linear Network Coding for Time Division Duplexing: Queueing Analysis (2009)
Article in International Conference Proceedings Book
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
Random Linear Network Coding for Time Division Duplexing: Energy Analysis (2009)
Article in International Conference Proceedings Book
Daniel E. Lucani; Milica Stojanovic; Muriel Médard

See all (12)

Of the same scientific areas

Teoria vectorial do sinal (1989)
Book
Francisco Correia Velez Grilo; António Manuel E. S. Casimiro; João António Correia Lopes
Telecomunicações e incapacidade (1994)
Book
Stephen Tetzchner; Diamantino Rui da Silva Freitas; Comunidades Europeias. Comissão. Direcção-Geral das

See all (70)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-10-03 at 07:59:48
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital