Abstract (EN):
This paper reports the implementation of slip boundary conditions in the open-source computational library OpenFOAM. The linear and nonlinear Navier slip laws, which are newly implemented in this paper, can be used both for Newtonian and viscoelastic constitutive models. For the former case, the Couette flow assumption near the wall is employed, and for the latter, the cell-centered extra-stress tensor components are linearly extrapolated to the wall. The validation is performed by comparing the numerical results obtained for Newtonian and simplified Phan-Thien-Tanner constitutive model fluids in Couette and Poiseuille flows, with existing analytical solutions. The results obtained using different slip factors were shown to be in agreement with the analytical solutions, even for the most extreme cases where the slip factor is high enough to induce a plug flow pattern for the velocity field. The newly implemented boundary conditions are also used to study the influence of slip in polymer processing, namely in the production of an extruded profile. The results obtained show that the developed slip boundary conditions are able to deal with complex geometrical problems, and are an important tool to support the search of a balanced flow distribution in the design of profile extrusion dies.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
11