Go to:
Logótipo
Você está em: Start » Publications » View » Rigidity of $C^2$ infinitely renormalizable unimodal maps.
Publication

Rigidity of $C^2$ infinitely renormalizable unimodal maps.

Title
Rigidity of $C^2$ infinitely renormalizable unimodal maps.
Type
Article in International Scientific Journal
Year
1999
Authors
W. de Melo
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 208
Pages: 91-105
ISSN: 0010-3616
Publisher: Springer Nature
Scientific classification
FOS: Natural sciences > Mathematics
Other information
Resumo (PT): Given C^2 infinitely renormalizable unimodal maps f and g with a quadratic critical point and the same bounded combinatorial type, we prove that they are C^{1+α} conjugate along the closure of the corresponding forward orbits of the critical points, for some α>0.
Abstract (EN): Given C^2 infinitely renormalizable unimodal maps f and g with a quadratic critical point and the same bounded combinatorial type, we prove that they are C^{1+α} conjugate along the closure of the corresponding forward orbits of the critical points, for some α>0.
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication with allowed access.
Related Publications

Of the same journal

The Compound Poisson Limit Ruling Periodic Extreme Behaviour of Non-Uniformly Hyperbolic Dynamics (2013)
Article in International Scientific Journal
Ana Cristina M Moreira Freitas; Jorge Milhazes Freitas; Mike Todd
Statistical Stability and Continuity of SRB Entropy for Systems with Gibbs-Markov Structures (2010)
Article in International Scientific Journal
Jose F Alves; Maria Carvalho; Jorge Milhazes Freitas
Rigidity of C-2 infinitely renormalizable unimodal maps (1999)
Article in International Scientific Journal
de Melo, W; Alberto A. Pinto
Rare Events for Cantor Target Sets (2020)
Article in International Scientific Journal
Ana Cristina Moreira Freitas; Jorge Milhazes Freitas; Rodrigues, FB; Soares, JV
Correction: A Convex Analysis Approach to Entropy Functions, Variational Principles and Equilibrium States (2023)
Article in International Scientific Journal
Maria Pires de Carvalho; Andrzej Bis; Miguel Ângelo de Sousa Mendes; Paulo Varandas; Xingfu Zhong

See all (7)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-06-25 at 08:01:26
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital