Go to:
Logótipo
Você está em: Start » Publications » View » Predictive model for fatigue evaluation of floating wind turbines validated with experimental data
Publication

Predictive model for fatigue evaluation of floating wind turbines validated with experimental data

Title
Predictive model for fatigue evaluation of floating wind turbines validated with experimental data
Type
Article in International Scientific Journal
Year
2024
Authors
Pimenta, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ribeiro, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Román, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Magalhães, F.
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Journal
Title: Renewable EnergyImported from Authenticus Search for Journal Publications
Vol. 223
ISSN: 0960-1481
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-TTF
Abstract (EN): Estimating internal forces and corresponding fatigue damage plays a central role in the definition of operation strategies of any wind turbine, particularly in offshore scenarios. Although strain gauges can be installed to monitor the internal forces at a particular section, it is not feasible to instrument a full wind farm, and new methods are needed that allow to eliminate, or significantly reduce, this type of installation. This paper presents a new physics motivated methodology that incorporates tower top accelerations, available in the monitoring systems of most modern wind turbines, to estimate the tower bending moments and fatigue life consumption, replacing more common data driven approaches based on environmental conditions and/or operation variables by analytical considerations. The expressions derived are validated by numerical simulations, and then applied to experimental data collected at a full scale floating wind turbine, with results systematically better when compared with a data driven approach, often applied in onshore wind turbines. By using a quite rare database, collected in one of the first utility -scale worldwide floating wind turbines, this method presents itself as one of the first data processing methodologies developed explicitly for floating wind turbines, while setting a theoretical background for future developments of monitoring strategies.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 14
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Modal properties of floating wind turbines: Analytical study and operational modal analysis of an utility-scale wind turbine (2024)
Article in International Scientific Journal
Pimenta, F; Ribeiro, D; Román, A; Magalhães, F.

Of the same journal

Marine renewable energy (2020)
Another Publication in an International Scientific Journal
Francisco Taveira Pinto; Paulo Rosa Santos; Tiago Ferradosa
Wood pellets as a sustainable energy alternative in Portugal (2016)
Article in International Scientific Journal
João Catalão; L.J.R. Nunes; J.C.O. Matias
Wave Energy Flux Variability and Trend along the United Arab Emirates Coastline based on a 40-year Hindcast (2020)
Article in International Scientific Journal
Francisco Taveira Pinto; Filipe Vieira; G. Cavalgante; E. Campos
Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline (2023)
Article in International Scientific Journal
Daniel Clemente; Paulo Rosa Santos; Tiago Ferradosa; Francisco Taveira Pinto
Vanadium (oxy)nitride as a new category of anode for direct ammonia solid oxide fuel cells cells (2022)
Article in International Scientific Journal
Laura Holz; Francisco Loureiro; Vanessa Graça; Sergey Mikhalev; Diogo Mendes; Adélio Mendes; Duncan Fagg

See all (61)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-07-20 at 00:30:06
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital