Go to:
Logótipo
Você está em: Start » Publications » View » Hidden Markov models on a self-organizing map for anomaly detection in 802.11 wireless networks
Publication

Hidden Markov models on a self-organizing map for anomaly detection in 802.11 wireless networks

Title
Hidden Markov models on a self-organizing map for anomaly detection in 802.11 wireless networks
Type
Article in International Scientific Journal
Year
2021
Authors
Anisa Allahdadi
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Jaime S. Cardoso
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Ricardo Morla
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 33
Pages: 8777-8794
ISSN: 0941-0643
Publisher: Springer Nature
Other information
Authenticus ID: P-00T-847
Abstract (EN): The present work introduces a hybrid integration of the self-organizing map and the hidden Markov model (HMM) for anomaly detection in 802.11 wireless networks. The self-organizing hidden Markov model map (SOHMMM) deals with the spatial connections of HMMs, along with the inherent temporal dependencies of data sequences. In essence, an HMM is associated with each neuron of the SOHMMM lattice. In this paper, the SOHMMM algorithm is employed for anomaly detection in 802.11 wireless access point usage data. Furthermore, we extend the SOHMMM online gradient descent unsupervised learning algorithm for multivariate Gaussian emissions. The experimental analysis uses two types of data: synthetic data to investigate the accuracy and convergence of the SOHMMM algorithm and wireless simulation data to verify the significance and efficiency of the algorithm in anomaly detection. The sensitivity and specificity of the SOHMMM algorithm in anomaly detection are compared to two other approaches, namely HMM initialized with universal background model (HMM-UBM) and SOHMMM with zero neighborhood (Z-SOHMMM). The results from the wireless simulation experiments show that SOHMMM outperformed the aforementioned approaches in all the presented anomalous scenarios.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 18
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Foreword to the special issue on pattern recognition and image analysis (2017)
Another Publication in an International Scientific Journal
Jaime S Cardoso; Pardo, XM; Paredes, R
Computational methods for pigmented skin lesion classification in images: review and future trends (2018)
Another Publication in an International Scientific Journal
Roberta B. Oliveira; João P. Papa; Aledir S. Pereira; João Manuel R. S. Tavares
State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer (2023)
Article in International Scientific Journal
Chen, LP; Xu, CC; Bao, XY; António Mendes Lopes; Li, PH; Zhang, CL
Robust classification with reject option using the self-organizing map (2015)
Article in International Scientific Journal
Ricardo Gamelas Sousa; Ajalmar R R Rocha Neto; Jaime S Cardoso; Guilherme A Barreto
Robust automated cardiac arrhythmia detection in ECG beat signals (2018)
Article in International Scientific Journal
Victor Hugo C. de Albuquerque; Thiago M. Nunes; Danillo R. Pereira; Eduardo José da S. Luz; David Menotti; João P. Papa; João Manuel R. S. Tavares

See all (20)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-11-05 at 03:00:37
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital