Go to:
Logótipo
Você está em: Start » Publications » View » Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters
Publication

Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters

Title
Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters
Type
Article in International Scientific Journal
Year
2016
Authors
C. Costa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Ribeiro, D
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Jorge, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Silva, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
António Arêde
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Journal
Vol. 123
Pages: 354-371
ISSN: 0141-0296
Publisher: Elsevier
Other information
Authenticus ID: P-00K-J34
Abstract (EN): This paper focuses on the calibration of a numerical model of a stone masonry arch railway bridge using dynamic modal parameters estimated from an ambient vibration test. The developed 3D numerical model is based on the finite element method, featuring a realistic representation of the bridge structural components and materials. The calibration methodology relied on a genetic algorithm strategy which allowed estimating and updating numerical model parameters, particularly the elastic properties of materials. The validation of the updated bridge material properties' parameters was based on the results of material testing, on existing bridge design data and on observations resulting from in situ visual inspections.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 18
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Reduced scale models based on similitude theory: A review up to 2015 (2016)
Another Publication in an International Scientific Journal
Coutinho, CP; Baptista, AJ; J. Dias Rodrigues
Numerical modelling of the cyclic behaviour of RC elements built with plain reinforcing bars (2011)
Another Publication in an International Scientific Journal
Jose Melo; Catarina Fernandes; Humberto Varum; Hugo Rodrigues; Anibal Costa; António Arêde
Assessment of train running safety on bridges: A literature review (2021)
Another Publication in an International Scientific Journal
Pedro Aires Montenegro; H. Carvalho; D. Ribeiro; Rui Calçada; M. Tokunaga; M. Tanabe; W. M. Zhai
3D numerical simulation of the cracking behaviour of a RC one-way slab under the combined effect of thermal, shrinkage and external loads (2020)
Article in International Scientific Journal
Gomes, J; Carvalho, R; Carlos Sousa; Granja, J; Rui Faria; Schlicke, D; Azenha, M
3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation (2019)
Article in International Scientific Journal
Pedro Alves Costa; Carlos Albino; Luis Godinho; Paulo Amado Mendes; Daniel Dias da Costa; Delfim Soares Júnior

See all (128)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Medicina da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-08-27 at 07:15:33
Acceptable Use Policy | Data Protection Policy | Complaint Portal | Política de Captação e Difusão da Imagem Pessoal em Suporte Digital