Inteligência Computacional e Sistemas de Potência
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Engenharia Eletrotécnica e de Computadores |
Ocorrência: 2018/2019 - 1S
Ciclos de Estudo/Cursos
Sigla |
Nº de Estudantes |
Plano de Estudos |
Anos Curriculares |
Créditos UCN |
Créditos ECTS |
Horas de Contacto |
Horas Totais |
PDEEC |
3 |
Plano de estudos oficial |
1 |
- |
7,5 |
70 |
202,5 |
Língua de trabalho
Inglês
Objetivos
This course aims at making students familiar with a number of tools pertaining to the domain of computatinal intelligence, which will be useful in dealing with power and energy system models in their research activity, in outher courses and in their profesional life.
The students having taken this course shall be able to develop models under the compytational intelligence paradigm, to programm algorithms and to discuss their results in terms of accuracy, effort and credibility.
Resultados de aprendizagem e competências
As a result of the course, the student will be better prepared to use Computational Intelligence methods.
Modo de trabalho
Presencial
Programa
The course syllabus includes:
- Evolutionary Computing: history, basic concepts; self adaptive models; convergence; theoretical foundations. Variants: genetic algorithms, evolutionary programming/evolution strategies.
- Particle Swarm Optimization: mouvement equation, convergence; convergence control, constriction.
- Evolutionary Particle Swarms: self-adaptive recombination.
- Cross-entropy optimization.
- Application of evolutionary swarm and cross-entropy algorithms to power system problems and discussion of the results. Application in reliability: population-based methods.
- Concept of mappers. Criticism of Minimum Square Error (MSE) as a training cost function. Introduction to Information Theoretic Learning (ITL). Training mappers under an Entropy-related MEE cost criterium. Correntropy and MCC criterium. Application of mappers in power system problems.
- Autoencoders and deep networks. Data compression and feature reduction. Interpretation in the information flow context. Unsupervised training using Infornation Theoretic concepts.
- Clustering using ITL concepts. Renyi Entropy and Cauchy-Schwarz divergence. Kulback-Leibler divergence. Mean Shift algorithms and Information Theoretic Mean Shift.
- Polynomial networks: introduction to GDHM (Group Data Handling Method). Construction/training algorithm. Application of GDHM in power system problems.
Bibliografia Obrigatória
Vladimiro Miranda; REDESIGNING MODELS WITH INFORMATION THEORETIC LEARNING CONCEPTS: A SHORT OVERVIEW, 2018 (Text supplied by the lecturer)
Métodos de ensino e atividades de aprendizagem
Lectures and assignments.
Palavras Chave
Ciências Físicas > Matemática > Algoritmos
Ciências Tecnológicas > Engenharia > Engenharia electrotécnica
Ciências Tecnológicas > Engenharia > Engenharia de sistemas
Tipo de avaliação
Avaliação distribuída com exame final
Componentes de Avaliação
Designação |
Peso (%) |
Apresentação/discussão de um trabalho científico |
20,00 |
Exame |
50,00 |
Trabalho prático ou de projeto |
30,00 |
Total: |
100,00 |
Componentes de Ocupação
Designação |
Tempo (Horas) |
Apresentação/discussão de um trabalho científico |
10,00 |
Elaboração de projeto |
40,00 |
Frequência das aulas |
50,00 |
Total: |
100,00 |
Obtenção de frequência
In order to have his/her attendance of the course recognized, the student must complete all assignments.
Fórmula de cálculo da classificação final
In order to obtain a passing mark, the student must complete all the assignments with a positive evaluation and have a minimum of 8/20 in the final exam.
To compute the final mark, the exam will entre with a weight of 50% and the set of assignments with a weight of 50%.
Avaliação especial (TE, DA, ...)
No exceptions allowed to the general evaluation method.
Melhoria de classificação
In order to improve the evaluation results, the student may be submitted to a second exam and may request a period to improve one of the assignments.