Go to:
Logótipo
You are here: Start > EC0037

Soil Mechanics II

Code: EC0037     Acronym: MSOL2

Keywords
Classification Keyword
OFICIAL Geotechnics

Instance: 2010/2011 - 2S

Active? Yes
Responsible unit: Geotechnics Division
Course/CS Responsible: Master in Civil Engineering

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
MIEC 275 Syllabus since 2006/2007 4 - 6 75 160

Teaching language

Portuguese

Objectives

Introduction to the concepts, theories and methods used in Civil Engineering for the design of works and structures whose stability relies on the mechanical behaviour of soil masses.

Program

Classical theories of lateral earth pressure. At-rest state of stress. Rankine active and passive states. Strains associated with Rankine states. Active and passive thrusts. Caquot-Kérisel tables. Coulomb theory. Mononobe-Okabe theory to estimate active and passive pressures under seismic conditions.
Design of gravity retaining walls. Modes of failure. Global safety factors. Limit state design and partial safety factors in Geotechnics. Introduction to Eurocode 7 - Geotechnical Design.
Stability of slopes and embankments. Solutions for infinite slopes. Wedge method. Fellenius and simplified Bishop methods. Stability of embankments on soft soils. Methods for the improvement of stability. Stability of cuttings in cohesive soils. Stabilization of natural slopes. The role of observation.
Undisturbed sampling. In situ testing versus laboratory testing. Penetration tests: SPT, CPT, CPTU (piezocone) and dynamic probing. Vane-shear test. Cross-hole seismic test. Plate load test. Self-boring pressuremeter test.
Shallow foundations. Bearing capacity. Theoretical solution and correction factors for shape, inclination of the load and influence of a rigid boundary and account for the eccentricity of the load. Immediate settlement. Elastic solution and semi-empirical corrections. Criteria for evaluating soil deformability modulus for estimating the settlement. Allowable settlement. Effect of soil-structure interaction on the distribution of the loads on the foundations and on the induced settlements.


Teaching methods and learning activities

Lectures for the presentation of the concepts, principles and theories with reference to works, accidents and natural phenomena conditioned by the behaviour of soil masses.
Tutorials for the resolution of numerical applications from the proposed problem sheets.
Use of a computer program for slope stability analysis.
Field trips.

Evaluation Type

Distributed evaluation with final exam

Eligibility for exams

Students have to reach at least a 10 out of 20 in the distributed classification
Continuous assessment will be calculated as follows:
- assiduity (25%)
- exercises done in theoretical-practical classes (60&)
- assignments done in practical classes (15%)



Assessment components
1- Final mark will be based on the grade of the final exam and the grade of the continuous assessment
2- The grade of the continuous assessment will be based on the following components:
- exercises
- assiduity

Calculation formula of final grade

The final mark is a weighted average of the continuous assessment and the final exam grades, which will weight of 0.25 and 0.75, respectively.
If this result is above 16 out of 20 the student is invited for an oral exam, otherwise the final mark is 16 out of 20.
If the exam is marked below 9.5 out of 20 the student will fail and that will be the final mark.

Examinations or Special Assignments

Home-work exercises included in the proposed problem sheets in complement of the tutorial and practical classes. Application of SLOPEW to the analysis of the stability of an embankment on soft ground.
The total time required by the proposed home-work is estimated in 14 hours.

Special assessment (TE, DA, ...)

In accordance with FEUP assessment regulations.

SPECIAL RULES FOR MOBILITY STUDENTS:
Proficiency in Portuguese and/or English;
Previous attendance of introductory graduate courses in the scientific field addressed in this module;
Evaluation by exam and/or coursework(s) defined in accordance with student profile.

Classification improvement

In accordance with FEUP assessment regulations.

Observations

.........................................................
Working time estimated out of class: 4 hours
Recommend this page Top
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Terms and Conditions  I Accessibility  I Index A-Z  I Guest Book
Page generated on: 2024-07-20 at 02:30:56 | Acceptable Use Policy | Data Protection Policy | Complaint Portal