Abstract (EN):
Background The use of different imaging modalities to assist in skin cancer diagnosis is a common practice in clinical scenarios. Different features representative of the lesion under evaluation can be retrieved from image analysis and processing. However, the integration and understanding of these additional parameters can be a challenging task for physicians, so artificial intelligence (AI) methods can be implemented to assist in this process. This bibliographic research was performed with the goal of assessing the current applications of AI algorithms as an assistive tool in skin cancer diagnosis, based on information retrieved from different imaging modalities. Materials and methods The bibliography databases ISI Web of Science, PubMed and Scopus were used for the literature search, with the combination of keywords: skin cancer, skin neoplasm, imaging and classification methods. Results The search resulted in 526 publications, which underwent a screening process, considering the established eligibility criteria. After screening, only 65 were qualified for revision. Conclusion Different imaging modalities have already been coupled with AI methods, particularly dermoscopy for melanoma recognition. Learners based on support vector machines seem to be the preferred option. Future work should focus on image analysis, processing stages and image fusion assuring the best possible classification outcome.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
8