Código: | M2008 | Sigla: | M2008 | Nível: | 200 |
Áreas Científicas | |
---|---|
Classificação | Área Científica |
OFICIAL | Matemática |
Ativa? | Sim |
Unidade Responsável: | Departamento de Matemática |
Curso/CE Responsável: | Licenciatura em Matemática |
Sigla | Nº de Estudantes | Plano de Estudos | Anos Curriculares | Créditos UCN | Créditos ECTS | Horas de Contacto | Horas Totais |
---|---|---|---|---|---|---|---|
L:B | 0 | Plano de Estudos Oficial | 3 | - | 6 | 56 | 162 |
L:CC | 1 | Plano estudos a partir do ano letivo 2021/22 | 2 | - | 6 | 56 | 162 |
3 | |||||||
L:F | 17 | Plano de Estudos Oficial | 2 | - | 6 | 56 | 162 |
3 | |||||||
L:G | 0 | Plano estudos a partir do ano letivo 2017/18 | 2 | - | 6 | 56 | 162 |
3 | |||||||
L:M | 108 | Plano de Estudos Oficial | 2 | - | 6 | 56 | 162 |
L:MA | 0 | Plano de Estudos Oficial | 3 | - | 6 | 56 | 162 |
L:Q | 0 | Plano estudos a partir do ano letivo 2016/17 | 3 | - | 6 | 56 | 162 |
Assimilar os conceitos básicos da teoria das funções de uma variável complexa, em particular o desenvolvimento em série de potências e a teoria de Cauchy. Este estudo contribuirá para desenvolver no estudante uma maior aptidão para lidar com os principais objectos e técnicas da análise matemática.
Ver parágrafo anterior.
Análise Real I, Análise Real II
Números complexos e funções complexas. Topologia do plano complexo. Limites e continuidade. Funções holomorfas e condições de Cauchy-Riemann. Séries de potências: raio de convergência; derivabilidade de funções definidas por séries. Funções analíticas. Funções exponencial, logaritmo e trigonométricas. Integrais ao longo de caminhos. Homotopia. Fórmula de Cauchy. Teoremas de Liouville, Goursat e de Morera. Analiticidade das funções holomorfas. Singularidades e funções meromorfas. Representação de Laurent. Teorema do prolongamento de Riemann. Teorema de Casorati-Weierstrass. Teorema dos resíduos. Princípio do argumento. Teorema de Rouché. Cálculo de integrais utilizando resíduos.
Aulas teóricas e práticas
Designação | Peso (%) |
---|---|
Exame | 100,00 |
Total: | 100,00 |
Designação | Tempo (Horas) |
---|---|
Estudo autónomo | 106,00 |
Frequência das aulas | 56,00 |
Total: | 162,00 |
Exame final