Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Novelty detection for multi-label stream classification under extreme verification latency

Novelty detection for multi-label stream classification under extreme verification latency

Título
Novelty detection for multi-label stream classification under extreme verification latency
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Costa, JD
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Júnior
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Faria, ER
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
João Gama
(Autor)
FEP
Gama, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Cerri, R
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 141
ISSN: 1568-4946
Editora: Elsevier
Indexação
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00Y-AHT
Abstract (EN): Multi-Label Stream Classification (MLSC) is the classification streaming examples into multiple classes simultaneously. Since new classes may emerge during the streaming process (concept evolution) and known classes may change over time (concept drift) it is challenging task. In real situations, concept drift and concept evolution occur in scenarios where the actual labels of arriving examples are never available; hence it is impractical to update decision models in a supervised fashion. This is known as Extreme Verification Latency, a topic that has not been well investigated in MLSC literature. This paper proposes a new method called MultI-label learNing Algorithm for Data Streams with Binary Relevance transformation (MINAS-BR), integrated with a Novelty Detection (ND) procedure for detecting concept evolution and concept drift, updating the model in an unsupervised fashion. Furthermore, since the label space is not static, we propose a new evaluation methodology for MLSC under extreme verification latency. Experiments over synthetic and real-world data sets with different concept drift and concept evolution scenarios confirmed the strategies employed in the MINAS-BR and presented relevant advances for handling streaming multi-label data. © 2023 Elsevier B.V.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Improving a simulated soccer team's performance through a Memory-Based Collaborative Filtering approach (2014)
Artigo em Revista Científica Internacional
Pedro Henriques Abreu; Daniel Castro Silva; Fernando Almeida; João Mendes-Moreira
Heuristics for online three-dimensional packing problems and algorithm selection framework for semi-online with full look-ahead (2024)
Artigo em Revista Científica Internacional
Ali, S; Ramos, AG; Maria Antónia Carravilla; José Fernando Oliveira
Glass container production scheduling through hybrid multi-population based evolutionary algorithm (2013)
Artigo em Revista Científica Internacional
toledo, cfm; arantes, md; de oliveira, rrr; almada-lobo, b
Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network (2019)
Artigo em Revista Científica Internacional
Yu Wang; Yating Chen; Ningning Yan; Longfei Zheng; Nilanjan Dey; Amira S. Ashour; V. Rajinikanth; João Manuel R. S. Tavares; Fuqian Shi

Ver todas (8)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-08 às 22:50:31 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias