Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Deep reinforcement learning for stochastic last-mile delivery with crowdshipping

Deep reinforcement learning for stochastic last-mile delivery with crowdshipping

Título
Deep reinforcement learning for stochastic last-mile delivery with crowdshipping
Tipo
Artigo em Revista Científica Internacional
Ano
2023
Autores
Silva, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Joao Pedro Pedroso
(Autor)
FCUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Viana, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Revista
A Revista está pendente de validação pelos Serviços Administrativos.
Vol. 12
ISSN: 2192-4376
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Classificação Científica
CORDIS: Ciências Físicas > Ciência de computadores > Cibernética > Inteligência artificial
FOS: Ciências exactas e naturais > Ciências da computação e da informação
Outras Informações
ID Authenticus: P-00X-SWJ
Abstract (EN): We study a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries but may also use the services of occasional drivers (ODs) willing to make deliveries using their own vehicles in return for a small fee. Under such a business model, a.k.a crowdshipping, the company seeks to make all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles plus the compensation paid to the ODs.We consider a stochastic and dynamic last-mile delivery environment in which customer delivery orders, as well as ODs available for deliveries, arrive randomly throughout the day, within fixed time windows.We present a novel deep reinforcement learning (DRL) approach to the problem that can deal with large problem instances. We formulate the action selection problem as a mixed-integer optimization program.The DRL approach is compared against other optimization under uncertainty approaches, namely, sample -average approximation (SAA) and distributionally robust optimization (DRO). The results show the effective-ness of the DRL approach by examining out-of-sample performance.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 13
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

Web mining for the integration of data mining with business intelligence in web-based decision support systems (2014)
Capítulo ou Parte de Livro
Marcos Aurélio Domingues; Alípio M. Jorge; Carlos Soares; Solange Oliveira Rezende
Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models (2013)
Artigo em Revista Científica Internacional
Pedro Henriques Abreu; Daniel Castro Silva; Joao Mendes Moreira; Luis Paulo Reis; Julio Garganta
Optimal leverage association rules with numerical interval conditions (2012)
Artigo em Revista Científica Internacional
Alipio Mario Jorge; Paulo J Azevedo
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles (2015)
Artigo em Revista Científica Internacional
Joao Mendes Moreira; Alipio Mario Jorge; Jorge Freire de Sousa; Carlos Soares

Ver todas (56)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-08 às 22:54:26 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias