Abstract (EN):
New strategies for the treatment of polymicrobial bone infections are required. In this study, the co-delivery of two antimicrobials by poly(D,L-lactic acid) (PDLLA) scaffolds was investigated in a polymicrobial biofilm model. PDLLA scaffolds were prepared by solvent casting/particulate leaching methodology, incorporating minocycline and voriconazole as clinically relevant antimicrobial agents. The scaffolds presented a sponge-like appearance, suitable to support cell proliferation and drug release. Single- and dual-species biofilm models of Staphylococcus aureus and Candida albicans were developed and characterized. S. aureus presented a higher ability to form singlespecies biofilms, compared to C. albicans. Minocycline and voriconazole-loaded PDLLA scaffolds showed activity against S. aureus and C. albicans single- and dual-biofilms. Ultimately, the cytocompatibility/functional activity of PDLLA scaffolds observed in human MG-63 osteosarcoma cells unveil their potential as a next-generation codelivery system for antimicrobial therapy in bone infections.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
12