Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM

Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM

Título
Weakly supervised Video Anomaly Detection based on 3D Convolution and LSTM
Tipo
Artigo em Revista Científica Internacional
Ano
2021-11
Autores
Zhen Ma
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Sem AUTHENTICUS Sem ORCID
José J. M. Machado
(Autor)
FEUP
João Manuel R. S. Tavares
(Autor)
FEUP
Revista
Título: SensorsImportada do Authenticus Pesquisar Publicações da Revista
Vol. 21 22
Páginas: 1-12
ISSN: 1424-3210
Editora: MDPI
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em ISI Web of Science ISI Web of Science
Publicação em Scopus Scopus - 0 Citações
Classificação Científica
CORDIS: Ciências Tecnológicas
FOS: Ciências da engenharia e tecnologias
Outras Informações
ID Authenticus: P-00V-P02
Resumo (PT):
Abstract (EN): Weakly supervised video anomaly detection is a recent focus of computer vision research thanks to the availability of large-scale weakly supervised video datasets. However, most existing research works are limited to the frame-level classification with emphasis on finding the presence of specific objects or activities. In this article, a new neural network architecture is proposed to efficiently extract the prominent features for detecting whether a video contains anomalies. A video is treated as an integral input and the detection follows the procedure of video-label assignment. The extraction of spatial and temporal features is carried out by three-dimensional convolutions, and then their relationship is further modeled using an LSTM network. The concise structure of the proposed method enables high computational efficiency, and extensive experiments demonstrate its effectiveness. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Nome do Ficheiro Descrição Tamanho
sensors-21-07508-v2 Article 2076.83 KB
Publicações Relacionadas

Da mesma revista

yy Optical Fiber Temperature Sensors and Their Biomedical Applications (2020)
Outra Publicação em Revista Científica Internacional
Roriz, P; Susana Silva; Frazao, O; Novais, S
Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies (2018)
Outra Publicação em Revista Científica Internacional
Dias, D; Cunha, JPS
Visualization of Urban Mobility Data from Intelligent Transportation Systems (2019)
Outra Publicação em Revista Científica Internacional
Sobral, T; Teresa Galvão Dias; José Luís Moura Borges
Visual Sensor Networks and Related Applications (2019)
Outra Publicação em Revista Científica Internacional
Costa, DG; Francisco Vasques; Collotta, M
Urban Safety: An Image-Processing and Deep-Learning-Based Intelligent Traffic Management and Control System (2021)
Outra Publicação em Revista Científica Internacional
Selim Reza; Hugo S. Oliveira; José J. M. Machado; João Manuel R. S. Tavares

Ver todas (201)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-08 às 09:13:40 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias