Abstract (EN):
The main goal of this study was to evaluate the removal of bromate from drinking water using a heterogeneous photocatalytic mili-photoreactor, based on NETmix technology. The NETmix mili-reactor consists of a network of channels and chambers imprinted in a back slab made of acrylic (AS) or stainless steel (SSS) sealed, through mechanical compression and o-rings, with an UVA-transparent front borosilicate glass slab (BGS). A plate of UVA-LEDs was placed above the BGS window. TiO2-P25 thin films were immobilized on the BGS (back-side illumination, BSI) or SSS (front-side illumination, FSI) by using a spray deposition method. The photoreduction rate of a 200 mu g L-1 (1.56 mu M) BrO3- solution was assessed taking into account the following: (i) catalyst film thickness, (ii) catalyst coated surface and illumination mechanism (BSI or FSI), (iii) solution pH, (iv) type and dose of sacrificial agent (SA), (v) reactor material, and (vi) water matrix. In acidic conditions (pH 3.0) and in the absence of light/catalyst/SA, 28% and 36% of BrO3- was reduced into Br- only by contacting with AS and SSS during 2-h, respectively. This effect prevailed during BSI experiments, but not for FSI ones since back SSS was coated with the photocatalyst. The results obtained have demonstrated that (i) the molar rate of disappearance of bromates was similar to the molar rate of formation of bromides; (ii) higher BrO3- reduction efficiencies were reached in the presence of an SA using the FSI at pH 3.0; (iii) formic acid ([BrO3-]:[CH2O2] molar ratio of 1:3) presented higher performance than humic acids (HA = 1 mg C L-1) as SA; (iv) high amounts of HA impaired the BrO3- photoreduction reaction; (v) SSS coated catalyst surface revealed to be stable for at least 4 consecutive cycles, keeping its photonic efficiency. Under the best operating conditions (FSI, 18 mL of 2% wt. TiO2-P25 suspension, pH 3.0), the use of freshwater matrices led to (i) equal or higher reaction rates, when compared with a synthetic water in the absence of SA, and (ii) lower reaction rates, when compared with a synthetic water containing formic acid with a [BrO3-]:[ CH2O2] molar ratio of 1:3. Notwithstanding, heterogeneous TiO2 photocatalysis, using the NETmix mili-reactor can be used to promote the reduction of BrO3- into Br-, attaining concentrations below 10 mu g L-1 (guideline value) after 2-h reaction.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
13