Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Formation control driven by cooperative object tracking

Formation control driven by cooperative object tracking

Título
Formation control driven by cooperative object tracking
Tipo
Artigo em Revista Científica Internacional
Ano
2015
Autores
Lima, PU
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ahmad, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Dias, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Conceicao, AGS
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Oliveira, L
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Nascimento, TP
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 63
Páginas: 68-79
ISSN: 0921-8890
Editora: Elsevier
Outras Informações
ID Authenticus: P-00A-0M2
Abstract (EN): In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 12
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Visual motion perception for mobile robots through dense optical flow fields (2017)
Artigo em Revista Científica Internacional
Pinto, AM; Paulo Gomes da Costa; Correia, M. V.; Aníbal Castilho Coimbra de Matos; António Paulo Moreira
Urban@CRAS dataset: Benchmarking of visual odometry and SLAM techniques (2018)
Artigo em Revista Científica Internacional
Ana Rita Gaspar; Alexandra Nunes; Andry Maykol Pinto; Aníbal Matos
TEFu-Net: A time-aware late fusion architecture for robust multi-modal ego-motion estimation (2024)
Artigo em Revista Científica Internacional
Agostinho, L; Pereira, D; Hiolle, A; Pinto, A
Robust 3/6 DoF self-localization system with selective map update for mobile robot platforms (2016)
Artigo em Revista Científica Internacional
Costa, CM; Sobreira, HM; Armando Jorge Sousa; Germano Veiga
Robust biped locomotion using deep reinforcement learning on top of an analytical control approach (2021)
Artigo em Revista Científica Internacional
Kasaei, M; Abreu, M; lau, n; Pereira, A; reis, lp

Ver todas (15)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-08 às 03:30:17 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias