Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models

Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models

Título
Using Multivariate Adaptive Regression Splines in the Construction of Simulated Soccer Team's Behavior Models
Tipo
Artigo em Revista Científica Internacional
Ano
2013
Autores
Pedro Henriques Abreu
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Joao Mendes Moreira
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Julio Garganta
(Autor)
FADEUP
Revista
Vol. 6 5
Páginas: 893-910
ISSN: 1875-6891
Editora: ATLANTIS PRESS
Classificação Científica
FOS: Ciências exactas e naturais > Ciências da computação e da informação
CORDIS: Ciências Físicas > Ciência de computadores > Cibernética > Inteligência artificial
Outras Informações
ID Authenticus: P-004-ZPY
Abstract (EN): In soccer, like in other collective sports, although players try to hide their strategy, it is always possible, with a careful analysis, to detect it and to construct a model that characterizes their behavior throughout the game phases. These findings are extremely relevant for a soccer coach, in order not only to evaluate the performance of his athletes, but also for the construction of the opponent team model for the next match. During a soccer match, due to the presence of a complex set of intercorrelated variables, the detection of a small set of factors that directly influence the final result becomes almost an impossible task for a human being. In consequence of that, a huge number of software packages for analysis capable of calculating a vast set of game statistics appeared over the years. However, all of them need a soccer expert in order to interpret the produced data and select which are the most relevant variables. Having as a base a set of statistics extracted from the RoboCup 2D Simulation League log files and using a multivariable analysis, the aim of this research project is to identify which are the variables that most influence the final game result and create prediction models capable of automatically detecting soccer team behaviors. For those purposes, more than two hundred games (from 2006-2009 competition years) were analyzed according to a set of variables defined by a soccer experts board, and using the MARS and RReliefF algorithms. The obtained results show that the MARS algorithm presents a lower error value, when compared to RReliefF (from a pairwire t-test for a significance level of 5%). The p-value for this test was 2.2e-16 which means these two techniques present a significant statistical difference for this data. In the future, this work will be used in an offline analysis module, with the goal of detecting which is the team strategy that will maximize the final game result against a specific opponent.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: pha@dei.uc.pt; dcs@dei.uc.pt; jmoreira@fe.up.pt; lpreis@dsi.uminho.pt; jgargant@fade.up.pt
Nº de páginas: 18
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Das mesmas áreas científicas

Web mining for the integration of data mining with business intelligence in web-based decision support systems (2014)
Capítulo ou Parte de Livro
Marcos Aurélio Domingues; Alípio M. Jorge; Carlos Soares; Solange Oliveira Rezende
Optimal leverage association rules with numerical interval conditions (2012)
Artigo em Revista Científica Internacional
Alipio Mario Jorge; Paulo J Azevedo
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles (2015)
Artigo em Revista Científica Internacional
Joao Mendes Moreira; Alipio Mario Jorge; Jorge Freire de Sousa; Carlos Soares
Improving a simulated soccer team's performance through a Memory-Based Collaborative Filtering approach (2014)
Artigo em Revista Científica Internacional
Pedro Henriques Abreu; Daniel Castro Silva; Fernando Almeida; João Mendes-Moreira

Ver todas (56)

Da mesma revista

Overcoming Motor-Rate Limitations in Online Synchronized Robot Dancing (2012)
Artigo em Revista Científica Internacional
santiago, cb; oliveira, jl; reis, lp; sousa, a; gouyon, f
Genetic Algorithm with a Local Search Strategy for Discovering Communities in Complex Networks (2013)
Artigo em Revista Científica Internacional
Liu, DY; Jin, D; Baquero, C; He, DX; Yang, B; Yu, QY
Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Arquitectura da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-08 às 22:47:16 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias