Abstract (EN):
Treating Helicobacter pylori (H. pylori) infections has been a never-ending challenge, which has contributed to the high incidence of gastric cancer. The antibiotics commonly used are not reaching the infection site in its active state and in a concentration high enough to effectively kill the bacteria. In this context, amoxicillin-loaded lipid nanoparticles with carefully chosen materials were developed, namely dioleoylphosphatidylethanolamine (DOPE) as a targeting agent and Tween (R) 80 and linolenic acid as antimicrobial agents. This work shows the ability of these nanoparticles in (i) targeting the bacteria (imaging flow cytometry) and inhibiting their adhesion to MKN-74 cells (bacteria-gastric cells adhesion model); (ii) killing the bacteria even as an antibiotic-free strategy (time-kill kinetic studies, scanning electron microscopy, and bacterial membrane permeability studies); (iii) overcoming gastrointestinal features using a newly developed in vitro infection model that includes both physical (epithelial cells and mucus) and the chemical (acid medium) barriers; and in (iv) being incorporated in a floating system that can increase the retention time at the stomach. Overall, this work presents an effective nanosystem to deal with the ulcer-bug. Besides, it also provides two innovative tools transferable to other fields - an in vitro infection model and a floating system to incorporate nanoparticles.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
12