Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f)

Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f)

Título
Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f)
Tipo
Artigo em Revista Científica Internacional
Ano
2005
Autores
Santos, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Alírio Rodrigues
(Autor)
FEUP
Revista
Vol. 25 1
Páginas: 1-6
ISSN: 1369-703X
Editora: Elsevier
Indexação
Classificação Científica
CORDIS: Ciências Tecnológicas > Engenharia > Engenharia química
Outras Informações
ID Authenticus: P-000-207
Resumo (PT): The production of dextran and fructose from carob pod extract (CPE) and cheese whey (CW) as carbon source by the bacterium Leuconostoc mesenteroides was investigated. The influence of secondary carbon sources (maltose, lactose and galactose) on dextran molecular weight and fermented broth viscosity were also studied. Significant changes were not observed in broth viscosity during dextran production at initial sucrose concentration of 20 and 120g/l. Complementary sugars maltose, lactose and galactose together with sucrose promote production of dextran with fewer glucose units. Dextran molecular weight decreases from the range 1,890,000-10,000,000 to 240,000-400,000 Da when complementary sugars are present. Polydispersity was improved when complementary sugars were used. Fermentation using mixtures of carob pod extract and cheese whey confirm these results obtained for production of dextran. Final concentrations of dextran and fructose indicate that reaction yields were not affected. Carob pod and cheese whey can be successfully used as raw material in the fermentation system described. The maximum concentrations of dextran and fructose obtained using carob pod extract resulted in 8.56 and 7.78 g/l, respectively. Combined carob pod extract and cheese whey resulted in dextran and fructose concentrations of 7.23 and 6.98 g/l, respectively. The corresponding dextran mean molecular weight was 1,653,723 and 325,829. (c) 2005 Published by Elsevier B.V.
Abstract (EN): The production of dextran and fructose from carob pod extract (CPE) and cheese whey (CW) as carbon source by the bacterium Leuconostoc mesenteroides was investigated. The influence of secondary carbon sources (maltose, lactose and galactose) on dextran molecular weight and fermented broth viscosity were also studied. Significant changes were not observed in broth viscosity during dextran production at initial sucrose concentration of 20 and 120g/l. Complementary sugars maltose, lactose and galactose together with sucrose promote production of dextran with fewer glucose units. Dextran molecular weight decreases from the range 1,890,000-10,000,000 to 240,000-400,000 Da when complementary sugars are present. Polydispersity was improved when complementary sugars were used. Fermentation using mixtures of carob pod extract and cheese whey confirm these results obtained for production of dextran. Final concentrations of dextran and fructose indicate that reaction yields were not affected. Carob pod and cheese whey can be successfully used as raw material in the fermentation system described. The maximum concentrations of dextran and fructose obtained using carob pod extract resulted in 8.56 and 7.78 g/l, respectively. Combined carob pod extract and cheese whey resulted in dextran and fructose concentrations of 7.23 and 6.98 g/l, respectively. The corresponding dextran mean molecular weight was 1,653,723 and 325,829. (c) 2005 Published by Elsevier B.V.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: jateixeira@deb.uminho.pt
Nº de páginas: 6
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Special issue: 12th International Chemical & Biological Engineering Conference - interfacing bio- and chemical engineering (2015)
Outra Publicação em Revista Científica Internacional
F. Xavier Malcata; Arminda Alves; Alírio Rodrigues
The role of intraparticle convection in protein adsorption by liquid chromatography using POROS 20 HQ/M particles (2002)
Artigo em Revista Científica Internacional
Leitao, A; Li, M; Alírio Rodrigues
Synthesis and assessment of a graphene-based composite photocatalyst (2015)
Artigo em Revista Científica Internacional
Pedro Magalhães; Joana Ângelo; Vera M. Sousa; Olga C. Nunes; Luísa Andrade; Adélio Mendes
Propane/propylene separation with Li-exchanged zeolite 13X (2010)
Artigo em Revista Científica Internacional
Carlos A. Grande; Jorge Gascon; Freek Kapteijn; Alírio E. Rodrigues
Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512(f) (2000)
Artigo em Revista Científica Internacional
Mariana Santos; José Teixeira; Alírio Rodrigues

Ver todas (26)

Recomendar Página Voltar ao Topo