Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Convolutional attention with roll padding: Classifying PM2.5 concentration levels in the city of Beijing
Publication

Convolutional attention with roll padding: Classifying PM2.5 concentration levels in the city of Beijing

Title
Convolutional attention with roll padding: Classifying PM2.5 concentration levels in the city of Beijing
Type
Article in International Scientific Journal
Year
2024
Authors
Gonçalves, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: EnergyImported from Authenticus Search for Journal Publications
Vol. 289
ISSN: 0360-5442
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-H41
Abstract (EN): A precise and timely classification of particulate matter 2.5 concentration levels is important for the design of air quality regulatory measures in a contemporaneous context characterized by the transition to a low-carbon economy. This study uses a well-known air quality dataset retrieved from the University of California at Irvine repository, which consists of a multivariate time series covering particulate matter 2.5 concentration levels in the city of Beijing for a period of 5 years. We train, test, and validate several deep learning architectures for a multinomial classification of the target variable in the period of 24 h ahead from the contemporaneous moment of action relying on historical information about the last 168 h and considering a sliding window of 24 h to construct examples. Results indicate that the internationally patented Variable Split Convolutional Attention model exhibits the best accuracy. The main novelty of this model consists of introducing bidimensional convolutional operations inside the attention block to capture the relative attention weight given to patterns of contiguous segments within different time-steps for each input variable. Therefore, a valuable deep learning architecture is presented to properly classify particulate matter 2.5 concentration levels in the atmosphere. © 2023 The Authors
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Towards low carbon energy systems: Engineering and economic perspectives (2016)
Another Publication in an International Scientific Journal
Isabel Soares; Paula Ferreira; Henrik Lund
Engineering and economics perspectives for a sustainable energy transition (2020)
Another Publication in an International Scientific Journal
Ferreira, P; Soares, I; Lund, H
Energy Transition: The economics & Engineering Nexus (2019)
Another Publication in an International Scientific Journal
Isabel Soares; Paula Ferreira; Henrik Lund
Wave energy converters design combining hydrodynamic performance and structural assessment (2022)
Article in International Scientific Journal
Gianmaria Giannini; Paulo Rosa Santos; Victor Ramos; Francisco Taveira Pinto
Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption (2023)
Article in International Scientific Journal
Vitor Miguel Ribeiro; Rui Gonçalves; Fernando Lobo Pereira

See all (101)

Recommend this page Top