Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > 1D and 3D numerical simulations in PEM fuel cells
Publication

1D and 3D numerical simulations in PEM fuel cells

Title
1D and 3D numerical simulations in PEM fuel cells
Type
Article in International Scientific Journal
Year
2011
Authors
D. S. Falcão
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
P. J. Gomes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
C. Pinho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
A. M. F. R. Pinto
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 36 No. 1
Pages: 12486-12498
ISSN: 0360-3199
Publisher: Elsevier
Indexing
Scientific classification
FOS: Engineering and technology > Other engineering and technologies
CORDIS: Technological sciences
Other information
Authenticus ID: P-002-MSD
Abstract (EN): The potential of fuel cells for clean and efficient energy conversion is generally recognized. The proton-exchange membrane (PEM) fuel cells are one of the most promising types of fuel cells. Models play an important role in fuel cell development since they enable the understanding of the influence of different parameters on the cell performance allowing a systematic simulation, design and optimization of fuel cells systems. In the present work, one-dimensional and three-dimensional numerical simulations were performed and compared with experimental data obtained in a PEM fuel cell. The 1D model, coupling heat and mass transfer effects, was previously developed and validated by the same authors [1,2]. The 3D numerical simulations were obtained using the commercial code FLUENT - PEMFC module. The results show that 1D and 3D model simulations considering just one phase for the water flow are similar, with a slightly better accordance for the 1D model exhibiting a substantially lower CPU time. However both numerical results over predict the fuel cell performance while the 3D simulations reproduce very well the experimental data. The effect of the relative humidity of gases and operation temperature on fuel cell performance was also studied both through the comparison of the polarization curves for the 1D and 3D simulations and experimental data and through the analysis of relevant physical parameters such as the water membrane content and the proton conductivity. A polarization curve with the 1D model is obtained with a CPU time around 5 min, while the 3D computing time is around 24 h. The results show that the 1D model can be used to predict optimal operating conditions in PEMFCs and the general trends of the impact on fuel cell performance of several important physical parameters (such as those related to the water management). The use of the 3D numerical simulations is indicated if more detailed predictions are needed namely the spatial distribution and visualization of various relevant parameters. An important conclusion of this work is the demonstration that a simpler model using low CPU has potential to be used in real-time PEMFC simulations. Copyright
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Selected Papers from International Conference on Catalytic Membrane Reactors n. 11 (ICCMR11), 6-12 July 2013, Porto, Portugal (2014)
Another Publication in an International Scientific Journal
Basile, A; J. M. Sousa; João Crespo
Preface to the special issue on "The 1st international conference on Advanced Energy Materials (AEM2016), 12-14 September 2016, Surrey, England" (2017)
Another Publication in an International Scientific Journal
Titus, E; ventura, j.; Gil, JC; Neto, V; Singh, A; Chaudhari, A; Rangel, CM
Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices- An overview (2022)
Another Publication in an International Scientific Journal
M. H. Sa; A.M.F.R. Pinto; V. B. Oliveira
Water management in direct methanol fuel cells (2009)
Article in International Scientific Journal
V.B. Oliveira; C.M. Rangel; A.M.F.R. Pinto
Water handling challenge on hydrolysis of sodium borohydride in batch reactors (2012)
Article in International Scientific Journal
M. J. F. Ferreira; Carmen M. Rangel; A. M. F. R. Pinto

See all (78)

Recommend this page Top