Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Very early prediction of wine yield based on satellite data from VEGETATION

Very early prediction of wine yield based on satellite data from VEGETATION

Título
Very early prediction of wine yield based on satellite data from VEGETATION
Tipo
Artigo em Revista Científica Internacional
Ano
2010
Autores
Mario Cunha
(Autor)
FCUP
Andre R S Marcal
(Autor)
FCUP
Lisa Silva
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Revista
Vol. 31 12
Páginas: 3125-3142
ISSN: 0143-1161
Editora: Taylor & Francis
Indexação
Publicação em ISI Web of Science ISI Web of Science
Current Contents
Classificação Científica
FOS: Ciências da engenharia e tecnologias > Engenharia do ambiente
Outras Informações
ID Authenticus: P-003-BEA
Abstract (EN): A forecast model for estimating the annual variation in regional wine yield based on remote sensing was developed for the main wine regions of Portugal. Normalized Difference Vegetation Index (NDVI) time-series obtained by the VEGETATION sensor, on board the most recent Satellite Pour l'Observation de la Terre (SPOT) satellite, over the period 1998-2008 were used for four test sites located in the main wine regions of Portugal: Douro (two sites), Vinhos Verdes and Alentejo. The CORINE (Coordination of Information on the Environment) Land Cover maps from 2000 were initially used to select the suitable regional test sites. The NDVI values of the second decade of April of the previous season to harvest were significantly correlated to the wine yield for all studied regions. The relation between the NDVI and grapevine induction and differentiation of the inflorescence primordial or bud fruitfulness during the previous season is discussed. This NDVI measurement can be made about 17 months before harvest and allows us to obtain very early forecasts of potential regional wine yield. Appropriate statistical tests indicated that the wine yield forecast model explains 77-88% of the inter-annual variability in wine yield. The comparison of official wine yield and the adjusted prediction models, based on 36 annual data records for all regions, shows an average spread deviation between 2.9% and 7.1% for the different regions. The dataset provided by the VEGETATION sensor proved to be a valuable tool for vineyard monitoring, mainly for inter-annual comparisons on a regional scale due to their high data acquisition rates and wide availability. The accuracy, very early indication and low-cost of the developed forecast model justify its use by the winery and viticulture industry.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: mcunha@mail.icav.up.pt
Nº de páginas: 18
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Unmanned Aerial Systems (UAS) for environmental applications special issue preface PREFACE (2018)
Outra Publicação em Revista Científica Internacional
Milas, AS; Sousa, JJ; Warner, TA; Ana Teodoro; Peres, E; Jose A Goncalves; Delgado Garcia, J; Bento, R; Phinn, S; Woodget, A
Three-dimensional data collection for coastal management – efficiency and applicability of terrestrial and airborne methods (2018)
Artigo em Revista Científica Internacional
Magalhães, A.; Jose A Goncalves; Bastos, L; Bio, A; Madeira, S.
Three-dimensional data collection for coastal management - efficiency and applicability of terrestrial and airborne methods (2018)
Artigo em Revista Científica Internacional
Jose A Goncalves; Bastos, L; Madeira, S; Magalhães, A.; Bio, A
The use of texture for image classification of black & white air photographs (2008)
Artigo em Revista Científica Internacional
Caridade, CMR; Marcal, ARS; Mendonca, T

Ver todas (23)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-03 às 17:18:09 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias