Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Reaction Mechanism of MHETase, a PET Degrading Enzyme

Reaction Mechanism of MHETase, a PET Degrading Enzyme

Título
Reaction Mechanism of MHETase, a PET Degrading Enzyme
Tipo
Artigo em Revista Científica Internacional
Ano
2021
Autores
Pinto, AV
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Pedro Moradas Ferreira
(Autor)
Outra
Neves, RPP
(Autor)
FCUP
Ramos, MJ
(Autor)
FCUP
Magalhaes, AL
(Autor)
FCUP
Revista
Título: Acs CatalysisImportada do Authenticus Pesquisar Publicações da Revista
Vol. 11
ISSN: 2155-5435
Outras Informações
ID Authenticus: P-00V-8MK
Abstract (EN): In 2016, one of the two enzymes involved in the polyethylene terephthalate (PET) degradation pathway of Ideonella sakaiensis 201-F6, MHETase, was found to exhibit a strong ability to degrade the PET monomer mono-(2-hydroxyethyl)terephthalate (MHET) at room temperature, converting it back into the precursors used in PET production. MHETase engineering to improve efficiency is an active field that suffers from an incomplete characterization of its reaction mechanism. In this paper, we analyze the reaction mechanism of MHETase using umbrella sampling molecular dynamics simulations at the B3LYP/MM level of theory. The combination of a high theoretical level and extensive sampling generated a very robust computational prediction. We found that MHETase catalyzed the conversion of MHET in two steps, with a rate-limiting step activation barrier of Delta G double dagger = 19.35 +/- 0.15 kcal.mol(-1) (from the weighted-histogram analysis). Our calculations are in line with the hypothesis that a transient tetrahedral intermediate mediates the reaction mechanism in each step, which is quite common in the serine hydrolase class. The energy of the first tetrahedral intermediate was similar to that of the reactant state, while the tetrahedral intermediate of the deacylation step was observed to lie closer to the rate-limiting transition state. Nevertheless, both determined tetrahedral states were found to be transient, with activation barriers close to similar to 2.0 kcal.mol(-1) relative to the product state of the acylation and deacylation steps, corresponding to a half-life of about 3 ps at 303.15 K.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 13
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Da mesma revista

Unveiling the Catalytic Mechanism of NADP(+)-Dependent Isocitrate Dehydrogenase with QM/MM Calculations (2016)
Artigo em Revista Científica Internacional
Neves, RPP; Pedro A Fernandes; Ramos, MJ
Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase (2018)
Artigo em Revista Científica Internacional
Paiva, P; Sergio Filipe Sousa; Ramos, MJ; Pedro A Fernandes
Relationship between Enzyme/Substrate Properties and Enzyme Efficiency in Hydrolases (2015)
Artigo em Revista Científica Internacional
Sergio F Sousa; Maria J Ramos; Carmay Lim; Pedro A Fernandes
Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations (2021)
Artigo em Revista Científica Internacional
Jerves, C; Neves, RPP; Ramos, MJ; da Silva, S; Pedro A Fernandes
Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations (2014)
Artigo em Revista Científica Internacional
Ana R Calixto; Natercia F Bras; Pedro A Fernandes; Maria J Ramos

Ver todas (21)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-08-23 às 14:57:32 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias