Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase

Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase

Título
Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase
Tipo
Artigo em Revista Científica Internacional
Ano
2018
Autores
Paiva, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Ramos, MJ
(Autor)
FCUP
Revista
Título: Acs CatalysisImportada do Authenticus Pesquisar Publicações da Revista
Vol. 8
Páginas: 4860-4872
ISSN: 2155-5435
Outras Informações
ID Authenticus: P-00P-Q3N
Abstract (EN): Human fatty acid synthase (hFAS) is a large multienzyme that catalyzes all steps of fatty acid synthesis, which is overexpressed in many cancer cells. Studies have 1 shown that FAS inhibitors exhibit antitumor activity without relevant effects over normal cells. Therefore, the molecular description of active sites in hFAS should stimulate the development of inhibitors as anticancer drug candidates. The malonyl-acetyl transferase (MAT) domain is responsible for loading acetyl-CoA and malonyl-CoA substrates to the acyl-carrier protein (ACP) domain, a carrier for fatty acid reaction intermediates. In this work, we have applied computational QM/MM methods at the DLPNO CCSD(T)/CBS:AMBER level of theory to study the MAT reaction mechanism. The results indicate that the initial catalytic stage occurs in two sequential steps: (1) nucleophilic attack on the thioester carbonyl group of the substrate through a concerted pathway that involves a Ser-His dyad and (2) tetrahedral intermediate breakdown and release of the free coenzyme A. The Gibbs activation energies for the first and second steps are 13.0 and 6.4 kcal.mol(-1) and 10.9 and 8.0 kcal.mol(-1), whether the substrate transferred to the MAT domain was acetyl-CoA or malonyl-CoA, respectively. Both Met499 and Leu582 form an oxyanion hole that lodges the negative charge of the substrate carbonyl, lowering the first step energetic barriers for both substrates. The mutation of the Arg606 residue by an alanine severely impairs the malonyl transfer reaction, while leading to a kinetic improvement of the transferase activity for acetyl-CoA, which is in agreement with earlier experimental studies. The results from this work encourage future studies that aim for the full comprehension of the MAT catalytic reaction and for the rational design of novel antineoplastic drugs that target this domain.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 25
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Human Fatty Acid Synthase: A Computational Study of the Transfer of the Acyl Moieties from MAT to the ACP Domain (2019)
Artigo em Revista Científica Internacional
Paiva, P; Sergio Filipe Sousa; Pedro A Fernandes; Ramos, MJ

Da mesma revista

Unveiling the Catalytic Mechanism of NADP(+)-Dependent Isocitrate Dehydrogenase with QM/MM Calculations (2016)
Artigo em Revista Científica Internacional
Neves, RPP; Pedro A Fernandes; Ramos, MJ
Relationship between Enzyme/Substrate Properties and Enzyme Efficiency in Hydrolases (2015)
Artigo em Revista Científica Internacional
Sergio F Sousa; Maria J Ramos; Carmay Lim; Pedro A Fernandes
Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations (2021)
Artigo em Revista Científica Internacional
Jerves, C; Neves, RPP; Ramos, MJ; da Silva, S; Pedro A Fernandes
Reaction Mechanism of MHETase, a PET Degrading Enzyme (2021)
Artigo em Revista Científica Internacional
Pinto, AV; Pedro Moradas Ferreira; Neves, RPP; Pedro A Fernandes; Ramos, MJ; Magalhaes, AL
Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations (2014)
Artigo em Revista Científica Internacional
Ana R Calixto; Natercia F Bras; Pedro A Fernandes; Maria J Ramos

Ver todas (21)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-07-21 às 17:27:44 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias