Análise Matemática 1
Áreas Científicas |
Classificação |
Área Científica |
OFICIAL |
Matemática |
Ocorrência: 2010/2011 - 1S
Ciclos de Estudo/Cursos
Língua de trabalho
Português
Objetivos
Pretende-se que os estudantes
1) consolidem os conhecimentos e técnicas básicas já seus conhecidos da análise real para a resolução de problemas práticos,
2) desenvolvam as capacidades necessárias de manipulação dos conceitos apresentados,
3) desenvolvam raciocínio independente e analítico,
4) desenvolvam capacidade de aplicação de conceitos matemáticos novos na resolução de problemas práticos,
5) desenvolvam capacidade de apresentar os seus raciocínios e soluções de uma forma clara e precisa.
Perante um problema dado o estudante deverá saber identificar técnicas de cálculo diferencial e integral em R que poderão ser utilizadas para a sua resolução. Aplicar correctamente essas técnicas
CDIO:1.1, 1.2, 2.2, 2.3, 2.4, 3.2
Programa
CONTEÚDO
Análise real: estudo de funções reais de variável real, sucessões e séries numéricas e equações diferenciais.
PROGRAMA
1- Revisão e consolidação de conhecimentos adquiridos no ensino secundário:
a) Regras de cálculo. Trigonometria e Geometria no plano.
b) Sucessões numéricas. Indução finita.
c) Funções reais de variável real. Limites, continuidade e derivação.
2- Integrais Indefinidos.
3- Integral Definido. Aplicação ao cálculo de áreas.
4- Integrais impróprios.
5- Equações diferenciais de 1ª ordem, lineares e de variáveis separáveis.
6- Equações diferenciais lineares de ordem n e coeficientes constantes.
7- Transformada de Laplace.
8- Séries Numéricas.
9- Aproximação Polinomial e Séries de Taylor.
Bibliografia Obrigatória
George F. Simmons; Calculus with Analytic Geometry, McGrawHill. ISBN: 0-07-057642-4
Stein, Sherman K.;
Calculus and Analytic Geometry. ISBN: 0-07-061175-0
Adams, Robert A.;
Calculus. ISBN: 0-201-39607-6
Larson, Hostetler e Edwards, Barcellos; Calculo, (Vols. 1,2)
Apostol, Tom M.;
Calculus
Boyce, William E.;
Elementary differential equations and boundary value problems. ISBN: 0-471-31999-6
Maria do Rosário de Pinho e Maria Margarida Ferreira; Análise Matemática 1, Apontamentos das Aulas Teóricas , 2007 (disponíveis na página da disciplina)
Bibliografia Complementar
Wylie, C. Ray Jr.;
Advanced engineering mathematics
Métodos de ensino e atividades de aprendizagem
Os estudantes são divididos em dois grupos; um grupo de estudantes que estão a repetir a disciplina (que poderão inscrever-se nas turmas 13 à 18) e outro de estudantes a frequentar a disciplina pela primeira vez. Os estudantes deste último grupo inscrevem-se às turmas de 1 a 12.
As turmas 13--18 têm início na semana de 13 a 17 de Setembro e terminam na última semana de aulas antes das férias de Natal. As aulas destas turmas continuam em Janeiro, até ao dia 21 de Janeiro, como sessões de dúvidas.
As aulas das turmas 1 a 12 têm início a 27 de Setembro e terminam a 21 de Janeiro.
As aulas desta disciplina para ambos os grupos são todas teórico-práticas. Nestas aulas faz-se a motivação e apresentação de problemas, discussão e dedução de resultados no âmbito do programa da disciplina, resolução e discussão de exercícios ilustrativos.
Uma selecção de exercícios propostos, organizados por Tema, é disponibilizada aos estudantes. Alguns destes exercícios serão resolvidos nas aulas.
Os estudantes deverão complementar o estudo da disciplina usando a bibliografia recomendada e resolvendo os exercícios seleccionados por Temas assim como outros indicados nos cadernos de exercícios da disciplina ou sugeridos pelos docentes.
Atendimento dos alunos: Cada docente marcará horário para atendimento aos alunos.
Palavras Chave
Ciências Físicas > Matemática > Análise matemática
Tipo de avaliação
Avaliação distribuída com exame final
Componentes de Avaliação
Descrição |
Tipo |
Tempo (Horas) |
Peso (%) |
Data Conclusão |
Participação presencial (estimativa) |
Participação presencial |
82,50 |
|
|
Teste 1 |
Exame |
1,00 |
|
|
Teste 2 |
Exame |
1,00 |
|
|
Teste 3 |
Exame |
1,00 |
|
|
Exame Final |
Exame |
2,50 |
|
|
Resolução de exercícios propostos |
Exame |
38,00 |
|
|
|
Total: |
- |
0,00 |
|
Componentes de Ocupação
Descrição |
Tipo |
Tempo (Horas) |
Data Conclusão |
Estudo individual |
Estudo autónomo |
90 |
|
|
Total: |
90,00 |
|
Obtenção de frequência
Para ter frequência à unidade curricular e poder ser classificado o aluno
não poderá exceder o número limite de faltas às aulas teórico-práticas (25% do número de aulas previstas).
Os estudantes que no ano lectivo de 2009/2010 tiveram frequência a AM1 estão dispensados de assistir às aulas de AM1 no ano de 2010/2011. Contudo, ao inscreverem-se numa turma teórico-prática (das turmas 13 a 18) no presente ano lectivo, ficarão sujeitos às regras de obtenção de frequência correspondentes a um estudante que frequenta pela primeira vez a disciplina.
Existem quatro momentos de avaliação, a saber:
1) Primeiro Teste (T1) a realizar no dia 20 de Outubro em hora e salas a determinar;
2) Segundo Teste (T2) realizado no dia 17 de Dezembro às 18 horas em salas a determinar;
3) Terceiro Teste (T3) a realizar no dia 24 de Janeiro de 2011 em hora e salas a determinar.
4) Exame de recurso (E) a marcar pelos serviços
NOTAS IMPORTANTE:
a) as classificações dos testes não são repescadas.
b) caso um estudante queira obter nota de frequência à disciplina mas falte a um dos testes, a classificação atribuída a esse teste para o cálculo da classificação final, é zero.
Fórmula de cálculo da classificação final
Qualquer estudante com frequência (ou dispensado de frequência) pode escolher obter aprovação na disciplina por testes ou por exame final.
Caso um estudante não obtenha aprovação à disciplina por testes, pode realizar o exame de recurso.
O teste T1 vale 20% e os testes T2 e T3 valem, cada um, 40%.
A classificação da unidade curricular corresponde, numa escala de 0 a 20, a
0,2xT1+0,4xT2+0,4xT3
ou ao exame de recurso (E).
Avaliação especial (TE, DA, ...)
Os alunos que durante o ano lectivo de 2010/2011 estão ao abrigo de estatuto especial (TE) estão dispensados de frequência.Tal como já dito, poderão obter aprovação por testes ou por exame final.
Melhoria de classificação
Exame final cotado para 20 valores.
Observações
Fraude, copianço ou tentativa de copianço durante provas de avaliação será punida com a reprovação à disciplina, independentemente de outras consequências disciplinares.