Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices

Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices

Título
Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices
Tipo
Artigo em Revista Científica Internacional
Ano
2008
Autores
Cristian Robert Munteanu
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Humberto Gonzalez Diaz
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Alexandre L Magalhaes
(Autor)
FCUP
Revista
Vol. 254 2
Páginas: 476-482
ISSN: 0022-5193
Editora: Elsevier
Classificação Científica
FOS: Ciências exactas e naturais > Matemática
Outras Informações
ID Authenticus: P-003-W4X
Abstract (EN): The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudoamino acid compositions or coupling numbers), 31)-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web too[). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/ method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Contacto: muntisa@gmail.com; humbertogd@gmail.com; almagalh@fc.up.pt
Nº de páginas: 7
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Alignment-free prediction of mycobacterial DNA promoters based on pseudo-folding lattice network or star-graph topological indices (2009)
Outra Publicação em Revista Científica Internacional
Alcides Perez Bello; Cristian Robert Munteanu; Florencio M Ubeira; Alexandre Lopes De Magalhaes; Eugenio Uriarte; Humberto Gonzalez Diaz
Natural/random protein classification models based on star network topological indices (2008)
Artigo em Revista Científica Internacional
Cristian Robert Munteanu; Humberto Gonzalez Diaz; Fernanda Borges; Alexandre Lopes de Magalhaes
Multi-target QPDR classification model for human breast and colon cancer-related proteins using star graph topological indices (2009)
Artigo em Revista Científica Internacional
Cristian Robert Munteanu; Alexandre L Magalhaes; Eugenio Uriarte; Humberto Gonzalez Diaz

Da mesma revista

Alignment-free prediction of mycobacterial DNA promoters based on pseudo-folding lattice network or star-graph topological indices (2009)
Outra Publicação em Revista Científica Internacional
Alcides Perez Bello; Cristian Robert Munteanu; Florencio M Ubeira; Alexandre Lopes De Magalhaes; Eugenio Uriarte; Humberto Gonzalez Diaz
Unravelling the relationship between protein sequence and low-complexity regions entropies: Interactome implications (2015)
Artigo em Revista Científica Internacional
Martins, F; Gonçalves, R; Oliveira, J; Cruz Monteagudo, M; Nieto Villar, JM; Paz y Miño, C; Rebelo, I; Tejera, E
Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses (2006)
Artigo em Revista Científica Internacional
Burroughs, NJ; Bruno M P M Oliveira; Alberto A. Pinto
Non-linear models based on simple topological indices to identify RNase III protein members (2011)
Artigo em Revista Científica Internacional
Guillermin Agÿero-Chapin; Gustavo A de la Riva; Reinaldo Molina-Ruiz; Aminael Sánchez-Rodríguez; Gisselle Pérez-Machado; Vítor Vasconcelos; Agostinho Antunes
Natural/random protein classification models based on star network topological indices (2008)
Artigo em Revista Científica Internacional
Cristian Robert Munteanu; Humberto Gonzalez Diaz; Fernanda Borges; Alexandre Lopes de Magalhaes

Ver todas (9)

Recomendar Página Voltar ao Topo
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z  I Livro de Visitas
Página gerada em: 2024-11-04 às 09:48:18 | Política de Utilização Aceitável | Política de Proteção de Dados Pessoais | Denúncias