Go to:
Logótipo
You are here: Start > Publications > View > Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication?
Today is sunday
Programa de formação da Biblioteca para o primeiro semestre já está disponível
Publication

Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication?

Title
Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication?
Type
Article in International Scientific Journal
Year
2022
Authors
Pinho, AS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Seabra, CL
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Nunes, C
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Salette Reis
(Author)
FFUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Martins, MC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Parreira, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 348
Pages: 489-498
ISSN: 0168-3659
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00W-STY
Abstract (EN): Bacterial biofilms account for 80% of all chronic infections, with cells being up to 1000 times more resistant to antibiotics than their planktonic counterparts. The recently discovered ability of Helicobacter pylori to form biofilms once again highlights why this bacterium is one of the most successful human pathogens. The current treatments failure rate reaches 40% of cases, emphasizing that new therapeutic options are a pressing need. Nanostructured lipid carriers (NLC), with and without docosahexaenoic acid (DHA), were very effective against H. pylori planktonic cells but their effect on H. pylori biofilms was unknown. Here, DHA-loaded NLC (DHA-NLC) and NLC without any drug (blank NLC) were tested on an optimized H. pylori in vitro floating mature biofilm model. DHA-NLC and blank NLC reduced the total biofilm biomass and had a bactericidal effect against both biofilm and planktonic bacteria in all the concentrations tested (0.125-2 mg/mL). DHA-NLC achieved biofilm biomass reduction in a concentration -8 times lower than blank NLC (0.125 vs 1 mg/mL, respectively). Both NLC were bactericidal at the lowest concentration tested (0.125 mg/mL) although with different efficiency, i.e. a decrease of ~ 6 log(10) for DHA-NLC and ~ 5 log(10) for blank NLC. In addition, the equivalent amount of free DHA (3.1 mu M) only reduced bacterial viability in ~ 2 log(10), demonstrating the synergistic effect of DHA and NLC in the treatment of H. pylori biofilms. Nevertheless, although viable bacteria were not detected by colony forming unit (CFU) counting after treatment with both NLC, confocal microscopy imaging highlighted that some H. pylori cells remained alive. In addition, scanning electron microscopy (SEM) analysis confirmed an increase in bacteria with a coccoid morphology after treatment, suggesting a transition to a viable but non-culturable (VBNC) state. Altogether, it is herein established that NLC, even without any drug, are promising for the management of H. pylori bacteria organized in biofilms, opening new perspectives for the eradication of this gastric pathogen.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 10
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Sustained drug release by contact lenses for glaucoma treatment-A review (2015)
Another Publication in an International Scientific Journal
Carvalho, IM; Marques, CS; Oliveira, RS; Coelho, PB; Costa, PC; Ferreira, DC
Pluronic (R) triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview (2023)
Another Publication in an International Scientific Journal
de Castro, KC; Coco, JC; dos Santos, EM; Ataide, JA; Martinez, RM; do Nascimento, MHM; Prata, J; da Fonte, PRML; Severino, P; Mazzola, PG; Baby, AR; Souto, EB; de Araujo, DR; Lopes, AM
Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis (2019)
Another Publication in an International Scientific Journal
Costa, C; Moreira, JN; Maria Helena Amaral; Sousa Lobo JM; Silva, AC
Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies (2020)
Another Publication in an International Scientific Journal
Marques, AC; Paulo Costa; Velho, S; Maria Helena Amaral
Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery (2016)
Another Publication in an International Scientific Journal
Fonte, P; Salette Reis; Sarmento, B

See all (24)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Terms and Conditions  I Accessibility  I Index A-Z  I Guest Book
Page generated on: 2024-11-03 at 07:04:18 | Acceptable Use Policy | Data Protection Policy | Complaint Portal