Go to:
Logótipo
You are here: Start > Publications > View > Recent advances in membrane technologies for hydrogen purification
Programa de formação da Biblioteca para o primeiro semestre já está disponível
Publication

Recent advances in membrane technologies for hydrogen purification

Title
Recent advances in membrane technologies for hydrogen purification
Type
Article in International Scientific Journal
Year
2020-03
Authors
da Silva Lopes, T.
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications Without AUTHENTICUS Without ORCID
J. M. Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Adélio Mendes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Journal
Vol. 45
Pages: 7313-7338
ISSN: 0360-3199
Publisher: Elsevier
Indexing
ScienceDirect (Elsevier)
Scientific classification
FOS: Engineering and technology > Chemical engineering
Other information
Authenticus ID: P-00Q-WN6
Abstract (EN): Planet Earth is facing accelerated global warming due to greenhouse gas emissions from human activities. The United Nations agreement at the Paris Climate Conference in 2015 highlighted the importance of reducing CO2 emissions from fossil fuel combustion. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Although hydrogen can be produced from water electrolysis, economic reasons dictate that most of the H-2 produced worldwide, currently comes from the steam reforming of natural gas and this situation is set to continue in the foreseeable future. This production process delivers a H-2-rich mixture of gases from which H-2 needs to be purified up to the ultra-high purity levels required by fuel cells (99.97%). This driving force pushes for the development of newer H-2 purification technologies that can be highly selective and more energy efficient Palladium-based membranes than the traditional energy intensive processes of pressure swing adsorption and cryogenic distillation. Membrane technology appears as an obvious energy efficient alternative for producing the ultra-pure H-2 required for fuel cells. However, membrane technology for H-2 purification has still not reached the maturity level required for its ubiquitous industrial application. This review article covers the major aspects of the current research in membrane separation technology for H-2 purification, focusing on four major types of emerging membrane technologies (carbon molecular sieve membranes; ionic-liquid based membranes; palladium-based membranes and electrochemical hydrogen pumping membranes) and establishes a comparison between them in terms of advantages and limitations.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 26
Documents
We could not find any documents associated to the publication with allowed access.
Related Publications

Of the same journal

Selected Papers from International Conference on Catalytic Membrane Reactors n. 11 (ICCMR11), 6-12 July 2013, Porto, Portugal (2014)
Another Publication in an International Scientific Journal
Basile, A; J. M. Sousa; João Crespo
Preface to the special issue on "The 1st international conference on Advanced Energy Materials (AEM2016), 12-14 September 2016, Surrey, England" (2017)
Another Publication in an International Scientific Journal
Titus, E; ventura, j.; Gil, JC; Neto, V; Singh, A; Chaudhari, A; Rangel, CM
Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices- An overview (2022)
Another Publication in an International Scientific Journal
M. H. Sa; A.M.F.R. Pinto; V. B. Oliveira
1D and 3D numerical simulations in PEM fuel cells (2011)
Article in International Scientific Journal
D. S. Falcão; P. J. Gomes; V. B. Oliveira; C. Pinho; A. M. F. R. Pinto
Water management in direct methanol fuel cells (2009)
Article in International Scientific Journal
V.B. Oliveira; C.M. Rangel; A.M.F.R. Pinto

See all (78)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Terms and Conditions  I Accessibility  I Index A-Z  I Guest Book
Page generated on: 2024-11-09 at 10:40:58 | Acceptable Use Policy | Data Protection Policy | Complaint Portal