Go to:
Logótipo
You are here: Start > Publications > View > Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations
Horário de verão da Biblioteca
Publication

Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations

Title
Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations
Type
Article in International Scientific Journal
Year
2014
Authors
Ana R Calixto
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Natercia F Bras
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Maria J Ramos
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: Acs CatalysisImported from Authenticus Search for Journal Publications
Vol. 4
Pages: 3869-3876
ISSN: 2155-5435
Scientific classification
FOS: Natural sciences > Chemical sciences
Other information
Authenticus ID: P-009-YS9
Abstract (EN): In this paper, we present the catalytic mechanism of human renin computationally investigated using an ONIOM quantum mechanics/molecular mechanics (QM/MM) methodology (B3LYP/6-31G(d):AMBER), with final energies calculated at the M06/6-311++G(2d,2p):AMBER level of theory. It was demonstrated that the full mechanism involves three sequential steps: (i) a nucleophilic attack of a water molecule on the carbonyl carbon of the scissile bond, resulting in a very stable tetrahedral gem-diol intermediate; (ii) a protonation of the peptidic bond nitrogen; and (iii) a complete breakage of the scissile bond. The activation energy barrier obtained for the angiotensinogen hydrolysis by renin was calculated as 22.0 kcal mol(-1), which is consistent with the experimental value, albeit slightly larger. We have shown also that the cleavage of a mutated substrate (Val10Phe) occurs in a manner similar to that of the wild-type substrate. These results provide an understanding of the reaction catalyzed by human renin with atomistic detail. This is of particular importance because this enzyme plays a special role in the control of the reninangiotensin system and, consequently, it is at the center of current hypertension therapy.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 8
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Unveiling the Catalytic Mechanism of NADP(+)-Dependent Isocitrate Dehydrogenase with QM/MM Calculations (2016)
Article in International Scientific Journal
Neves, RPP; Pedro A Fernandes; Ramos, MJ
Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase (2018)
Article in International Scientific Journal
Paiva, P; Sergio Filipe Sousa; Ramos, MJ; Pedro A Fernandes
Relationship between Enzyme/Substrate Properties and Enzyme Efficiency in Hydrolases (2015)
Article in International Scientific Journal
Sergio F Sousa; Maria J Ramos; Carmay Lim; Pedro A Fernandes
Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations (2021)
Article in International Scientific Journal
Jerves, C; Neves, RPP; Ramos, MJ; da Silva, S; Pedro A Fernandes
Reaction Mechanism of MHETase, a PET Degrading Enzyme (2021)
Article in International Scientific Journal
Pinto, AV; Pedro Moradas Ferreira; Neves, RPP; Pedro A Fernandes; Ramos, MJ; Magalhaes, AL

See all (21)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Engenharia da Universidade do Porto  I Terms and Conditions  I Accessibility  I Index A-Z  I Guest Book
Page generated on: 2024-08-23 at 10:26:48 | Acceptable Use Policy | Data Protection Policy | Complaint Portal