Mathematical Analysis II
Keywords |
Classification |
Keyword |
OFICIAL |
Mathematics |
Instance: 2009/2010 - 2S
Cycles of Study/Courses
Teaching language
Portuguese
Objectives
1- BACKGROUND
Almost every aspect of professional work in the world involves mathematics. A solid knowledge of mathematical analysis is required for any engineering degree namely to compute physical quantities.
2- SPECIFIC AIMS
Development of the reasoning capacity of the students and knowledge of essential mathematical concepts. Students should get solid theoretical and practical formation on the main concepts and results of differential and integral calculus of several variables, including the basic theorems of calculus. Computation of physical quantities.
3- PREVIOUS KNOWLEDGE
Functions and graphs. Knowledge of differential and integral calculus of one real variable.
4- PERCENT DISTRIBUTION
Scientific component:75%
Technological component:25%
5- LEARNING OUTCOMES
Knowledge and Understanding- Parametric curves in Rn and normal and tangent vectors; to calculate line integrals on that curves. Partial and directional derivatives for real-valued and vector-valued functions; gradient vector and jacobian matrix. The chain rule for real-valued and vector-valued functions including implicit functions. Maxima and minima of unconstrained functions of two and three variables and for constrained functions as well as using Lagrange multipliers method applied to functions with one or two constraints. Evaluation of double integrals over general regions in R2 using rectangular and polar coordinates. Establishment of the relationship between the line integral and the double integral based on the Green’s theorem. Calculation of triple integrals over regions on R3 using rectangular, cylindrical and spherical coordinates.
Engineering analysis- Differential and integral calculus of several variables.
Engineering design- Engineering problems of multiple variables.
Investigations- Practical formation on the main concepts and results of differential and integral calculus in Rn.
Engineering practice- Computation of physical quantities.
Transferable skills- Knowledge of differential and integral calculus of several real variable functions.
Program
I –Vector-valued functions depending on a real variable; parametric equations of a line in Rn. Limits, continuity, differentiation and integration of vector-valued functions and applications. Arc length evaluation.
II - Introduction to surfaces in R3: quadric, cylindrical and revolution surfaces. General notions for real-valued functions of n variables: domain and graph. Vector-valued functions of n variables; parametrical representation for curves in Rn and surfaces in R3. Introductory topological notions on Rn. Limits and continuity for scalar and vector-valued functions of n variables.
III - Differentiation: partial and directional derivatives; gradient vector; partial derivatives of higher order; total derivative or Fréchet’s derivative and differentiability of a scalar function of n variables. Applications of the gradient: tangent plane and maximum of a directional derivative. Differentiability of vector-valued functions of n variables–Jacobian matrix. Properties of the derivative; different cases of the chain rule. Functions defined implicitly; implicit function theorem and implicit differentiation. Taylor’s formula for scalar functions of n variables. Extrema of scalar functions of n variables; constrained extrema and Lagrange multipliers.
IV - Double integrals: over a rectangle and over more general regions in R2. Properties and geometric interpretation of double integrals. Fubini’s theorem – changing the order of integration. Applications of double integrals to the computation of physical quantities. Changing variables in double integrals; double integrals in polar coordinates. Triple integrals: over rectangular parallelepiped and more general regions in R3 . Properties and geometric interpretation of triple integrals. Fubini’s theorem – changing the order of integration for triple integrals. Applications to volumes, average values, center of mass and moment of inertia. Changing variables: triple integrals in cylindrical and spherical coordinates.
V – Line integral: definition, properties and applications. Green’s Theorem.
Mandatory literature
Larson, Hostetler & Edwards; Cálculo, McGraw-Hill Interamericana , 2006. ISBN: 85-86804-56-8
C.C.António, T. Arede; Apontamentos de Análise Matemática II , (A publicar nos conteúdos da unidade curricular no SIFEUP)
Complementary Bibliography
Marsden, Jerrold E.;
Vector Calculus, N. ISBN: 0-7167-1856-1
Apostol, Tom M.;
Calculus, N. ISBN: 84-291-5001-3
Teaching methods and learning activities
Theoretical-practical classes are based on the presentation of the different themes of the course with the support of slides. All concepts and methodologies are exemplified by examples. Students are encouraged to participate in class by answering to questions asked by the professor individually or in group, as well as to solve exercises.
Practical classes (2 hours per week) are based on problem solving. The exercises will be available on ‘Contents’. Professor will be available to answer to all questions and doubts.
keywords
Physical sciences > Mathematics
Evaluation Type
Distributed evaluation with final exam
Assessment Components
Description |
Type |
Time (hours) |
Weight (%) |
End date |
Attendance (estimated) |
Participação presencial |
70,00 |
|
|
1st Examination |
Exame |
2,00 |
|
2010-04-26 |
2nd Examination or Final Examination |
Exame |
2,00 |
|
2010-06-28 |
Final Examination |
Exame |
2,00 |
|
2010-07-19 |
|
Total: |
- |
0,00 |
|
Amount of time allocated to each course unit
Description |
Type |
Time (hours) |
End date |
Study time to follow lessons |
Estudo autónomo |
81 |
|
Study time for examinations |
Estudo autónomo |
30 |
|
|
Total: |
111,00 |
|
Eligibility for exams
Students cannot miss more classes than allowed by the Article 4 of General Evaluation Rules of FEUP.
Calculation formula of final grade
Final mark will be based on the following components:
- 1st Test (T1)- It will cover the first half of the program of the course. Students will be informed about the date; if the student reaches a minimum mark of 8 out 20 it might account for 50% of the final mark according to the rules described below.
- 2nd Test (T2) – Only for students who reached a minimum mark of 8 in the first test. It will cover the rest of the program of the course; if the student reaches a minimum mark of 8 out 20 it might account for 50% of the final mark according to the rules described below.
- Final Exam (FE)- Simultaneous to the second test; It is for students who did not reach a minimum mark of 8 in the first test plus for students that although they reached the minimum mark of 8 in the first test decide to do the whole exam instead of the second test. This exam will cover all the program of the course.
- Recurso Exam (RE)- For students who did not reach a minimum mark in both tests or who did not reach a passing grade in both tests or exam. It is also for students who want to improve their mark. It will cover all the program of the course.
All the tests/exams will last 2 hours.
Final Mark (FM) calculation:
FM=( T1+ T2)/2 only if T1>=8 and T2>=8 .
or FM= FE or FM= RE.
Examinations or Special Assignments
Not applicable.
Special assessment (TE, DA, ...)
An exam, according to General Evaluation Rules of FEUP.
Classification improvement
Students can improve their mark by attending to the recurso (resit) exam at the recurso season, according to paragraph 2 of Article 10 of General Evaluation Rules of FEUP.