Resumo (PT):
Abstract (EN):
Advanced oxidation processes, such as the Fenton’s reagent, are powerful methods for decontamination of different environments from recalcitrant organics. In this work, the degradation of paraquat (PQ)
pesticide was assessed (employing the commercial product gramoxone) directly inside the pipes of a pilot
scale loop system; the effect of corroded cast iron pipe and loose deposits for catalysing the process was
also evaluated. Results showed that complete degradation of paraquat ([PQ]0 = 3.9 × 10−4 M, T = 20–30 ◦C,
pH0 = 3, [H2O2]0 = 1.5 × 10−2 M and [Fe (II)] = 5.0 × 10−4 M,) was achieved within 8 h, either in lab scale or
in the pilot loop. Complete PQ degradation was obtained at pH 3 whereas only 30 % of PQ was degraded at
pH 5 during 24 h. The installation of old cast iron segments with length from 0.5 to 14 m into PVC pipe loop
system had a significant positive effect on degradation rate of PQ, even without addition of iron salt; the longer
the iron pipes section, the faster was the pesticide degradation. Addition of loose deposits (mostly corrosion
products composed of goethite, magnetite and a hydrated phase of FeO) also catalysed the Fenton reaction
due to presence of iron in the deposits. Moreover, gradual addition of hydrogen peroxide improved gramoxone degradation and mineralization. This study showed for the first time that is possible to achieve complete
degradation of pesticides in situ pipe water system and that deposits and corroded pipes catalyse oxidation of
pesticides.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
11