Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > 1OP12

Business Analytics

Código: 1OP12     Sigla: BA

Áreas Científicas
Classificação Área Científica
OFICIAL Ciência de Computadores

Ocorrência: 2020/2021 - 1S Ícone do Moodle

Ativa? Sim
Unidade Responsável: Agrupamento Científico de Matemática e Sistemas de Informação
Instituição Responsável: Faculdade de Economia

Ciclos de Estudo/Cursos

Sigla Nº de Estudantes Plano de Estudos Anos Curriculares Créditos UCN Créditos ECTS Horas de Contacto Horas Totais
LECO 13 Plano de Bolonha a partir de 2012 3 - 3 - 81
LGES 5 Plano de Bolonha a partir de 2012 3 - 3 - 81
Mais informaçõesA ficha foi alterada no dia 2020-09-09.

Campos alterados: Pre_requisitos, Componentes de Avaliação e Ocupação, Métodos de ensino e atividades de aprendizagem

Língua de trabalho

Inglês

Objetivos

Após a conclusão da unidade curricular, o estudante deve:

Conhecer:

  1. Estruturar informação em bases de dados multidimensionais
  2. os vários tipos de tarefas de extração de conhecimento de dados (Data Mining);
  3. conhecer os principais métodos/algoritmos para cada tipo de tarefa;

e ser capaz de:
a)aplicar esses métodos a um novo problema de análise de dados;

b) avaliar os resultados e compreender os métodos estudados.

 

Resultados de aprendizagem e competências

Estruturar a informação numa base de dados multidimensional

Conhecimento como formular um problema como problema de extracção de conhecimento.

Capacidade de aplicar métodos/algoritmos a um novo problema de análise de dados, e de avaliar os resultados e compreender o funcionamento dos métodos estudados.

Modo de trabalho

Presencial

Pré-requisitos (conhecimentos prévios) e co-requisitos (conhecimentos simultâneos)

Conhecimentos básicos de bases de dados

Programa

 


  1. Bases de dados multidimensionais. PowerBI

  2. Conhecimento: Representação de conhecimento.

  3. Ferramentas de data mining. - Metodologias de projectos de data mining (CRISP-DM)

  4. Classificação, 

  5. Text Mining e Web Mining

  6. Classificação, análise de agrupamentos, detecção de mudança.

  7. Análise de redes sociais.

Bibliografia Obrigatória

Gama João; Extração de Conhecimento de Dados Data Mining, Silabo, 2017

Métodos de ensino e atividades de aprendizagem

A unidade curricular recorre a duas metodologias de ensino complementares: aulas expositivas e sessões laboratoriais. Enquanto as primeiras se destinam a apresentar os métodos e ferramentas de extração de conhecimento, as segundas adotam uma abordagem de tipo ‘hands-on’ que permite aos estudantes trabalhar diretamente com os dados, implementar os métodos e interpretar os resultados obtidos, assegurando a sua total autonomia em trabalho futuro

Tipo de avaliação

Avaliação distribuída com exame final

Componentes de Avaliação

Designação Peso (%)
Apresentação/discussão de um trabalho científico 30,00
Trabalho prático ou de projeto 30,00
Exame 40,00
Total: 100,00

Componentes de Ocupação

Designação Tempo (Horas)
Apresentação/discussão de um trabalho científico 15,00
Estudo autónomo 5,00
Frequência das aulas 42,00
Elaboração de projeto 50,00
Trabalho escrito 50,00
Total: 162,00

Obtenção de frequência

Aprovação nos 2 trabalhos

Fórmula de cálculo da classificação final

0.3*HW1 + 0.3*HW2+ 0.4*Exame
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Economia da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-08-01 às 04:05:59 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias
SAMA2