Variedades Diferenciáveis
| Áreas Científicas |
| Classificação |
Área Científica |
| OFICIAL |
Matemática |
Ocorrência: 2011/2012 - 1S
Ciclos de Estudo/Cursos
Língua de trabalho
Inglês
Objetivos
The student should acquire a thorough knowledge of the theory of differential manifolds and be able to use its tools in mathematical problem solving and research.
Programa
Elements of general topology: topological spaces, connectedness, compactness, quotient spaces. Differentiable manifolds, differentiable maps. Inverse images of regular values. Sard's Theorem (without proof). Fiber bundles, tangent and cotangent bundles of a manifold. Vector fields and flows.The Lie bracket of vector fields. Lie groups (classical). Differential forms, exterior derivative. Integration on manifolds. Stokes' theorem. Elements of homologicval algebra; de Rham cohomology. The Poincaré Lemma. Homotopy and homotopy invariance of de Rham cohomology. Euler characteristic. The Mayer-Vietoris sequence. Degree of a map. The index of a vector field with isolated singularities and the Poincaré-Hopf Theorem (outline).
Bibliografia Obrigatória
Barden, D. and Thomas, C.; An introduction to differential manifolds, Imperial College Press, 2003
Bibliografia Complementar
Sutherland, W.A. ; Introduction to Metric and Topological Spaces, Oxford University Press, 1975
Tu, L.W.; An Introduction to Manifolds, Springer, 2008
Conlon, L.; Differentiable Manifolds, 2nd ed., Birkhäuser, 2008
Fulton, W.; Algebraic Topology - A First Course, Springer, 1997
Métodos de ensino e atividades de aprendizagem
Lectures, problem sessions, student presentations.
Tipo de avaliação
Avaliação distribuída sem exame final
Componentes de Avaliação
| Descrição |
Tipo |
Tempo (Horas) |
Peso (%) |
Data Conclusão |
| Participação presencial (estimativa) |
Participação presencial |
44,00 |
|
|
| Second test |
Exame |
2,00 |
|
2011-11-16 |
| Third test |
Exame |
2,00 |
|
2011-12-15 |
| First test |
Exame |
2,50 |
|
2011-10-17 |
|
Total: |
- |
0,00 |
|
Obtenção de frequência
The following compulsory requirements must be satisfied:
- Presence in 75% of classes;
- Approval in 75% of the (approximately) weekly homework sets.
Fórmula de cálculo da classificação final
There will be three tests during the semester. The final mark is the average of the two highest marks obtained in the three tests. The mark in each individual test must be at least 7 (seven) out of 20 (twenty). Provisional dates: 13/10/2011, 16/11/2011, 15/12/2011.
Observações
Júri: Peter Gothen, Helena Mena Matos