Differentiable Manifolds
| Keywords |
| Classification |
Keyword |
| OFICIAL |
Mathematics |
Instance: 2011/2012 - 1S
Cycles of Study/Courses
Teaching language
English
Objectives
The student should acquire a thorough knowledge of the theory of differential manifolds and be able to use its tools in mathematical problem solving and research.
Program
Elements of general topology: metric and topological spaces, connectedness, compactness, quotient spaces. Topological groups. Brief reference to surfaces. Homotopy, covering spaces, fundamental group. Differentiable manifolds: local structure, Sard Lemma, transversality, vector fields and flows. Fiber bundles, tangent and cotangent bundles of a manifold. Lie derivative of vector fields. Lie algebras. Lie groups (classical). Homogeneous spaces. Differential forms, exterior derivative. Integration on manifolds. Stokes' theorem. Degree of a map. Index of a vector field. Singular and Cech cohomology. De Rham cohomology and de Rham's theorem.
Mandatory literature
Barden, D. and Thomas, C.; An introduction to differential manifolds, Imperial College Press, 2003
Complementary Bibliography
Sutherland, W.A. ; Introduction to Metric and Topological Spaces, Oxford University Press, 1975
Tu, L.W.; An Introduction to Manifolds, Springer, 2008
Conlon, L.; Differentiable Manifolds, 2nd ed., Birkhäuser, 2008
Fulton, W.; Algebraic Topology - A First Course, Springer, 1997
Teaching methods and learning activities
Lectures, problem sessions, student presentations.
Evaluation Type
Distributed evaluation without final exam
Assessment Components
| Description |
Type |
Time (hours) |
Weight (%) |
End date |
| Attendance (estimated) |
Participação presencial |
44,00 |
|
|
| Second test |
Exame |
2,00 |
|
2011-11-16 |
| Third test |
Exame |
2,00 |
|
2011-12-15 |
| First test |
Exame |
2,50 |
|
2011-10-17 |
|
Total: |
- |
0,00 |
|
Eligibility for exams
The following compulsory requirements must be satisfied:
- Presence in 75% of classes;
- Approval in 75% of the (approximately) weekly homework sets.
Calculation formula of final grade
There will be three tests during the semester. The final mark is the average of the two highest marks obtained in the three tests. The mark in each individual test must be at least 7 (seven) out of 20 (twenty). Provisional dates: 13/10/2011, 16/11/2011, 15/12/2011.