Abstract (EN):
The photovoltaic (PV) response of SnOx/Si heterojunctions (HJs) through the change of the SnO and SnO(2)ratio in the samples that allows us to obtain p- or n-type SnO(x)films is investigated in this work. The values of short-circuit photocurrent density (J(sc)), open-circuit voltage (V-OC), fill factor (FF) and power conversion efficiency (PCE) are found to be 12.6 mA cm(-2), 0.23 V, 27% and 8.3%, for the p-SnOx/n-Si HJ and 10.3 mA cm(-2), 0.20 V, 20% and 4.5% for the n-SnOx/p-Si HJ. The enhanced PV effect observed in the p-SnOx/n-Si HJs can be attributed to a small band offset between SnO(x)and Si, which lowers the diffusion length that can contribute to higher recombination rate and smaller series resistance. Furthermore, the values ofJ(sc),V-OC, FF and PCE were enhanced up to 30.9 mA cm(-2), -2.0 V, 19% and 10.9%, respectively, through the insertion of a 0.5Ba(Zr0.2Ti0.8)O-3-0.5(Ba0.7Ca0.3)TiO3(BCZT) ferroelectric layer between n-Si and p-SnOx. The built-in field developed at the Si/BCZT/SiOx/SnO(x)interfaces together with the depolarizing field, provides a favorable electric potential for the separation and further transport of photo generated electron-hole (e-h) pairs. This work provides a viable approach by combining ferroelectrics with p-SnOx/n-Si HJs for building efficient ferroelectric-based solar cells.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
13