Official Code: | 9209 |
Acronym: | L:M |
Use of an algebraic manipulation program (Maxima) to treat analysis problems, algebra and geometry. Particular attention is given to the consolidation, using geometric and development interpretation and analysis of algorithms, of the concepts covered in the courses Linear Algebra and Analytic Geometry I (M1010), Real Analysis I (M1011) and topics of Elementary Mathematics (M1024).
The student should know: the basic concepts of parametrized curves in the plane and the space; the fundamental results concerning the analysis of multivariate functions and understand the concepts of partial derivative, gradient vector, local maxima and minima, tangent plane to the graph of functions of two variables; the student should also know the methods of multiple integration and use them to determine areas, volumes, etc, of bounded plane or space regions, using change of variables if necessary.
With this course, it is intended that students will know and understand some of the main results of Euclidean geometry that, for its historical importance, should be of general knowledge for mathematicians. In this course the students should also develop their ability to solve geometric problems and to be able to visualize in space.
Application of mathematical concepts, namely the ones studied in other first-year courses, to the analytical and numerical treatment of mathematical models in Physics, Biology, Ecology, Economics, Medicine and other fields of knowledge.
Introduction to the use of computers running GNU/LInux operating systems.
Introduction to programming using the Python language.
Notions of low and high level languages; interpreters and compilers; editor and development environmnets. Values, types and expressions. Functions and procedures. Conditionals and selection. Iteration and recursion. Basic data structures: lists, tuples and dictionaries.
To introduce, in a concrete way, the main results of Classical Analysis of svereal variables as well as the ones of Vector Analysis, emphasizing techniques specific to this area as well as their applications.
Acquisition of basic concepts of Probability and Statistics and their application to concrete situations.
To introduce the basic concepts and results of Group Theory, both throught
the classical examples of these structure and in an abstract level.
The main aim of this subject is given a mathematical problem, to study sufficient conditions for the existence and unicity of its solution, to establish a constructive method to solve it, to study and control the errors involved, to give an algoritmh for the solution and to implement it in a computer and to study and interpret the numerical results.
Study of affine and projective geometry over a field and an introduction to plane algebraic curves. Essencial use will be made of methods from theory of group actions, linear algera, bilinear algebra and quadratic forms, and elementary results from ring theory, polynomial algebras and field extensions.
To learn the basic notions and techniques of First-order Logic, of Set Theory and of its axiomatics. In particular, to clarify the notion of proof, to master proof methods and to know some more operational aspects of Set Theory, namely cardinal arithmetic.
Objectives:
Initial and basics knowledge in the area of Mathematical Theory of Control, area of application-oriented mathematics that deals with the basic principles underlying the analysis and design of control systems. The discipline provides for computational simulation of systems using CAD tools, namely MATLAB and Simulink
With this course, it is intended that students will know and understand some of the main results of Combinatorics that, for its present relevance within Mathematics, and by its special applicability, inside and outside Mathematics, should be of general knowledge for mathematicians. In this course the students should also develop their ability to solve combinatorial problems and the ability do solve problemas looking for the more suitable structure.
To introduce the basic concepts and results of Number Theory, together with some of its computational aspects. To give some of its cryptographical applications.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Efectuar medições e o respectivo registo com rigor Familiarização com instrumentos de medida básicos e universais Utilizar técnicas básicas de análise de dados Distinguir o conceito de precisão do de exactidão Promover a compreensão de conceitos de Física Realizar actividades experimentais de forma competente, a partir da leitura de protocolos Desenvolver competências de trabalho cooperativo Promover a pesquisa de informação relevante para o trabalho experimental Elaborar e escrever relatórios de actividades experimentais
Introdução à Física Térmica. Noções básicas de Termodinâmica clássica e de Mecânica Estatística. Aplicações a sistemas clássicos simples e a sistemas quânticos.
Conhecer a fundamentação da MQ.
Conhecer o formalismo matemático da Mecânica Quântica.
Resolver a equação de Schrödinger (resolução exata de casos simples)
Aprender os métodos perturbativos de resolução de problemas.
Aprender a teoria geral do momento angular.
• Familiarização com ideias e métodos de Mecânica Ondulatória, Elasticidade e Hidrodinâmica. • Compreender o acoplamento entre osciladores lineares; noção de modos normais. • Entender o conceito de onda, e a sua descrição e classificações nas suas mais variadas vertentes de aplicação à física. • Efectuar análise de Fourier, bem como entender a sua importância no estudo de ondas lineares. • Compreender o resultado da sobreposição de ondas e o fenómeno de interferência e difracção. • Compreender os conceitos de velocidade de fase e de grupo e o conceito de dispersão. • Entender e descrever o estado de deformação e as tensões aplicadas num corpo elástico isotrópico, bem como relacionar as duas. • Analisar problemas simples de dinâmica de fluídos e de equilíbrio de fluídos. • Efectuar a ligação a problemas de tecnologia.
•Obter formação de base em Eletromagnetismo. •Derivar e apresentar as leis e métodos do Eletromagnetismo numa perspetiva fenomenológica. •Estabelecer ligações e paralelismos entre o Eletromagnetismo e a Mecânica usando conceitos como força e energia. •Evidenciar a importância do conceito de campo na formulação das leis do Eletromagnetismo e enquanto entidade mediadora das interações físicas. •Aplicar, no contexto do eletromagnetismo, conceitos e métodos da Análise Vectorial e do Cálculo Integral no espaço. •Apresentar e descrever aplicações relevantes do Eletromagnetismo em ciência e tecnologia.
Compreender a inadequação dos conceitos clássicos na interpretação de alguns resultados experimentais e a necessidade de uma nova formulação da Física. Introduzir a mecânica ondulatória, fazendo aplicações a sistemas unidimensionais. Compreender a estrutura nuclear e processos nucleares. Estudar aplicações da Física Quântica em Astrofísica, Matéria Condensada e/ou Óptica.
Prática laboratorial em Física e Eletrónica.
Familiarização dos estudantes com aspectos de eletrónica e instrumentação necessários à realização de trabalho experimental, através da execução de um conjunto representativo de trabalhos de Física e Eletrónica, incluindo análise dos resultados experimentais, cálculo de erros, representação gráfica, e avaliação crítica dos resultados obtidos;
Promoção da pesquisa de informação relevante para o trabalho experimental;
Elaboração e redação de relatórios de atividades experimentais;
Desenvolvimento de competências de trabalho de grupo.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
A disciplina de Introdução à Química dos Materiais é uma unidade curricular destinada a alunos do primeiro ciclo dos cursos da Faculdade de Ciências da Universidade de Porto. Trata-se de uma disciplina de carácter introdutório e generalista que versa a estrutura interna das várias classes de materiais (a diferentes escalas, desde a escala atómico-molecular à macroscópica), as propriedades químicas, físicas e mecânicas diferenciadoras dos materiais, e, ainda, a sua função e aplicação prática.
Pretende-se desenvolver nos alunos a capacidade de compreensão e descrição dos diferentes procedimentos analíticos habitualmente usados em análise química, identificando os seus aspectos comuns e mostrando as suas características particulares que os tornam específicos para aplicações analíticas. Assimilação e integração de conceitos e de características de modo a proporcionar uma visão abrangente dos processos baseados no equilíbrio heterógeneo, em particular, os processos de separação física e química. Proporcionar a aquisição de conhecimentos sobre análise volumétrica.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Desenvolvimento de competências laboratoriais na síntese e caracterização de compostos inorgânicos recorrendo a operações unitárias laboratoriais e técnicas instrumentais de caracterização (condutimetria, espectroscopia de UV/vis, espectroscopia de FTIR, medição de momentos magnéticos). Aquisição de capacidade de adaptação a situações novas e de interpretação de resultados.
Execução de algumas técnicas básicas (de purificação / identificação) comuns em Química Orgânica; 2 Execução laboratorial da síntese de compostos orgânicos; 3 Desenvolvimento da capacidade de uma análise crítica dos resultados obtidos; 4 Elaboração de um relatório científico; 5Desenvolvimento de alguma autonomia no laboratório.
Esta unidade curricular tem como objetivo principal apresentar uma visão coerente e integrada dos fundamentos químicos dos principais fenómenos biológicos, começando por uma descrição das bases moleculares da vida e prosseguindo pela descrição e racionalização físico-química de processos biológicos vitais e grandes vias metabólicas dos seres vivos.
Proporcionar conhecimentos sobre ligação química e geometria molecular em compostos inorgânicos. Aplicação dos conceitos de termodinâmica química, de ácido-base e de oxidação-redução à previsão da reactividade e estabilidade de compostos inorgânicos. Introdução à química dos complexos de metais de transição.
Integração dos conhecimentos adquiridos nas unidades curriculares de Química Analítica e Introdução ao processo analítico na prática laboratorial de processos volumétricos, de separação física e de métodos potenciométricos e espetrofotométricos, através da execução de diversos trabalhos práticos. Desenvolvimento de capacidades de execução laboratorial, registo sistemático, interpretação de resultados experimentais e sua avaliação crítica.
Desenvolver aptidões para a realização de trabalho experimental, registo sistemático de resultados, interpretação e discussão de resultados experimentais, apresentação de resultados e elaboração de relatórios escritos. Desenvolver a capacidade de adaptação a novas situações e de trabalho em grupo.
O objetivo principal é melhorar a formação científica em Química Ambiental:
aplicar os princípios químicos à compreensão dos fenómenos ambientais, sem esquecer o papel dos organismos vivos nesses mesmos fenómenos; compreender os processos que têm lugar nos compartimentos ambientais e o modo como a atividade humana interatua com os processos naturais; combinar a aplicação dos princípios químicos ao maior desafio que hoje se põe à humanidade – a recuperação, manutenção e a melhoria da qualidade ambiental.
Outros objectivos: melhorar a capacidade de interpretar textos, encontrar informação, sintetizar e transmitir conhecimentos no âmbito da Química Ambiental; aquisição de uma perspetiva global da Química Ambiental nos diversos compartimentos ambientais.
A recolha e a preparação de uma amostra são passos essenciais num procedimento analítico e, apesar disso, são aqueles que o analista poderá estar menos preparado para enfrentar. Com esta disciplina pretende-se minimizar o efeito dos erros de amostragem no resultado final da análise, introduzindo as noções básicas do procedimento de amostragem, apresentando e discutindo as várias estratégias possíveis para a realização da amostragem. Aquisição de conhecimentos sobre os diversos processos de tratamento de amostras directamente relacionados ou não com o método de análise.
Esta disciplina trata de tópicos de termodinâmica aplicados a diversos processos no âmbito da indústria e engenharia química.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Estudo das geometrias afim e projectiva sobre um corpo e uma introdução às curvas algébricas planas. Será feito uso teoria das Acções de Grupos, da Álgebra Linear, Álgebra Bilinear e Formas Quadráticas, e resultados elementares sobre anéis, anéis de polinómios sobre um corpo e extensões de corpos
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Combinatória que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Estudo das geometrias afim e projectiva sobre um corpo e uma introdução às curvas algébricas planas. Será feito uso teoria das Acções de Grupos, da Álgebra Linear, Álgebra Bilinear e Formas Quadráticas, e resultados elementares sobre anéis, anéis de polinómios sobre um corpo e extensões de corpos
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Combinatória que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
O objectivo geral desta Unidade Curricular é proporcionar conhecimentos sobre Horticultura Herbácea Geral, com ênfase nos aspectos de engenharia hortícola das culturas protegidas.
Concretamente, pretende-se que os alunos: 1) Desenvolvam uma visão integrada da horticultura herbácea, nomeadamente ao nível dos factores de produção e sua optimização; 2) Conheçam a relevância económica e social da horticultura herbácea, com ênfase para a geografia hortícola nacional, peso dos produtos hortícolas na economia agraria nacional e no comércio externo; 3) Conheçam as principais classificações utilizadas para enquadrar as plantas hortícolas, incluindo a nomenclatura científica das principais espécies; 4) Compreendam as bases fisiológicas das respostas das plantas ao condicionamento ambiental e conheçam as ferramentas disponíveis para o condicionamento ambiental adequado aos objectivos pretendidos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Domínio de terminologia técnica e científica utilizada em agricultura.
Fundamentar a integração das operações gerais de cultura com as características do ambiente biofísico, económico e social da exploração agrícola e com a natureza das actividades (produções vegetais e animais), combinando racionalmente os recursos disponíveis em diferentes modos de produção.
Desenvolver uma visão integrada da agricultura e da sua multifuncionalidade.
Compreender que a agricultura pelo espaço que ocupa, pela população que requer, pelo valor que gera, desempenha um conjunto diversificado de funções com grande impacte na utilização dos recursos naturais e na sociedade pelo que os agro-sistemas devem basear-se a longo prazo em processos produtivos ecologicamente sustentáveis, socialmente responsáveis mas também economicamente eficientes
O objectivo geral desta Unidade Curricular é proporcionar conhecimentos sobre Horticultura Herbácea Geral, com ênfase nos aspectos de engenharia hortícola das culturas protegidas.
Concretamente, pretende-se que os alunos: 1) Desenvolvam uma visão integrada da horticultura herbácea, nomeadamente ao nível dos factores de produção e sua optimização; 2) Conheçam a relevância económica e social da horticultura herbácea, com ênfase para a geografia hortícola nacional, peso dos produtos hortícolas na economia agraria nacional e no comércio externo; 3) Conheçam as principais classificações utilizadas para enquadrar as plantas hortícolas, incluindo a nomenclatura científica das principais espécies; 4) Compreendam as bases fisiológicas das respostas das plantas ao condicionamento ambiental e conheçam as ferramentas disponíveis para o condicionamento ambiental adequado aos objectivos pretendidos.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Aplicação dos conceitos básicos de agricultura e agronomia através de uma visão integrada dos principais sistemas de produção vegetal e animal. No final desta Unidade curricular pretende-se que o aluno: 1) compreenda as técnicas e práticas de intensificação utilizadas em fitotecnias especializadas; 2) consiga executar projectos básicos das necessidades hídricas das culturas e respectiva programação de rega, 3) conheça o processo de tomada de decisão na protecção integrada, 4) integrar equipas multidisciplinares para estudar problemas complexos ao nível do sistema de agricultura.
Nesta disciplina pretende-se que os alunos compreendam e dominem os principais mecanismos fisiológicos que estão na base dos sistemas digestivo, reprodutivo, lactação, crescimento e comportamento dos animais de interesse zootécnico.
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
A Célula é a unidade fundamental da vida, e o conhecimento da sua fisiologia constitui a base onde se apoia toda a Biologia e as suas aplicações, como a Medicina moderna. O objetivo desta UC é dar a conhecer aos alunos a Biologia da Célula a nível geral, incluindo as suas estruturas e processos funcionais principais, e respetivas bases moleculares, assim como as metodologias experimentais utilizadas para contruir esse conhecimento.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Adquirir os conhecimentos de base na área da Ecologia e saber utilizá-los para interpretar e intervir em situações concretas.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Fornecer conhecimentos básicos sobre a biologia dos principais grupos de animais invertebrados e vertebrados.
Esta unidade curricular tem por objectivo proporcionar aos estudantes uma visão geral da diversidade e evolução de: fungos, protistas e plantas. A abordagem ao Reino Plantae inclui o conceito de alternância de gerações no seu ciclo de vida, o estudo da morfologia de famílias selecionadas, das suas estruturas vegetativas e reprodutivas, das características anatómicas internas, uma introdução à fisiologia vegetal, incluindo as relações hídricas e transporte interno, e ainda classificação dos grandes grupos vegetais de acordo com as suas relações filogenéticas.
O objetivo básico do curso é que o estudante compreenda o modo como a anatomia está associada à função das plantas. Sendo as plantas organismos complexos, o curso explora aspetos que as tornam peculiares, centrando-se especialmente nos processos bioquímicos e moleculares envolvidos no seu crescimento e desenvolvimento. É também objetivo do curso que o estudante compreenda o modo como as plantas interatuam com o meio ambiente.
Abordar alguns tópicos fundamentais da biologia das bactérias, focando as suas estruturas vegetativas e reprodutoras, genética, ecologia e a sistemática e taxonomia.
Executar e discutir trabalhos práticos relacionados com a biologia destes organismos.
No final da disciplina, os alunos com aproveitamento deverão possuir noções fundamentais sobre a biologia das bactérias e saber executar experiências básicas nesta área.
A disciplina de Toxicologia Geral visa fornecer conhecimentos básicos nesta área. Pretende-se referir e analisar a importância dos principais poluentes. Pretende-se ainda formar e informar os alunos sobre as principais questões de toxicologia geral no âmbito nacional e internacional. Serão ainda objectivos fundamentais desta disciplina o fornecimento de conceitos teóricos importantes em toxicologia geral, nomeadamente no que diz respeito ao processo de intoxicação, aos efeitos tóxicos em diferentes sistemas de órgãos, às metodologias de planeamento experimental, de quantificação e de aplicação dos resultados a situações reais de avaliação de risco. Far-se-á referência ás principais aplicações da Toxicologia.
Habilitar os alunos com conhecimentos básicos sobre etapas fundamentais relativas à origem e evolução do homem, e com um quadro conceptual que lhes permita compreender os padrões de diversidade biológica e genética das populações humanas contemporâneas. Familiarizá-los com ferramentas de análise em investigação antropológica.
Fornecimento de bases teóricas e práticas para a compreensão da organização e fisiologia dos principais sistemas animais
Aprendizagem dos princípios essenciais relacionados com as várias áreas da genética: genética mendeliana, citogenética, genética molecular, genética populacional e genética quantitativa, com especial atenção nas possíveis aplicações dos vários conceitos e métodos de análise.
Pretende-se que com base nos conhecimentos e experiência obtidas com a frequência desta disciplina, os alunos adquiram competências que lhes permitam intervir nas várias temáticas relacionadas com a Microbiologia Alimentar. Espera-se ainda que os alunos compreendam a importância das matérias abordadas para a indústria alimentar e numa perspectiva de saúde pública.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Aquisição de conceitos básicos e fundamentais sobre os processos geodinâmicos internos e externos, sua interdependência e compreensão dos seus efeitos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Objectivos A Geologia Estrutural é a ciência (ramo da Geologia) que tem como objectivo o estudo das estruturas (forma e geometria interna e externa) adquiridas pelos corpos rochosos após a sua formação, as suas causas e distribuição geográfica. A Geologia Estrutural avança, não só pela mera descrição das estruturas, mas através da análise rigorosa dessas estruturas e dos mecanismos que as geram. Para se conseguir isto, é necessário recorrer à quantificação, à formulação matemática e ao estabelecimento de modelos físicos. Os objectivos da Geologia Estrutural incluem dois pontos fundamentais: • Definição, caracterização e relação das estruturas observadas e os episódios de deformação; • Caracterização do estado de tensão dominante em cada fase de deformação.
Disciplina que trata de dois temas essenciais, a Estratigrafia e a Paleontologia divididos em sub-temas. Pela aplicação dos princípios fundamentais da Estratigrafia e das metodologias clássicas de correlação bem como de outras mais recentes como a análise de fácies, a análise tectonossedimentar e a análise sequencial, e pela caracterização física, química e biológica dos ambientes, processos e produtos sedimentares, enquadrados no contexto geológico e temporal em que ocorrem, objectiva-se o conhecimento e a compreensão de modelos causa/efeito tendo como permuta principal o processo/produto geológico integrado na análise espacial e temporal de bacias sedimentares e respectivas relações com a geodinâmica ao longo dos tempos geológicos Na Paleontologia Geral pretende-se que os alunos adquiram conhecimentos básicos da Paleontologia, nomeadamente sobre as aplicações desta disciplina, métodos e técnicas de investigação, relações com a Estratigrafia e Geohistória, assim como sobre a Sistemática Paleontológica. Os outros sub-temas dizem respeito à Paleozoologia e Paleobotânica e Evolução da Vida na Terra e tem por objectivo fornecer conhecimentos que permitam a identificação dos fósseis mais importantes no estudo da Estratigrafia salientando a sua importância no estabelecimento de biozonas, correlações estratigráficas, interpretação dos ambientes sedimentares, conhecimento da evolução da vida e sua relação com a história da Terra.
Aquisição de conhecimentos teóricos sobre as leis que regem a distribuição dos elementos químicos nos processos geoquímicos naturais; resolução de casos práticos de tratamento de dados analíticos que permitam caracterizar a evolução primária e o efeito de processos geoquímicos secundários; compreensão dos efeitos da intervenção do homem no equilíbrio do ambiente natural a partir do estudo da mobilidade e dispersão dos elementos
Dotar os alunos com as competências necessárias à resolução de problemas geológicos por recurso a ferramentas informáticas.
Aquisição de conhecimentos teóricos e práticos essenciais para a compreensão e interpretação integrada dos processos envolvidos na génese das rochas sedimentares e dos solos.
Como resultados da aprendizagem e competências, pretende-se que os estudantes sejamcapazes de:
- enquadrar as rochas sedimentares no contexto da dinâmica dos processos geológicos;
- descrever e classificar as rochas sedimentares;
- interpretar os processos de meteorização, transporte a deposição dos sedimentos que formam as rochas;
- compreender as condições fisico-químicas associadas aos ambientes onde se depositaram os sedimentos que dão origem às rochas sedimentares;
- conhecer os processos diagenéticos associados à génese das rochas sedimentares;
- compreender a génese e evolução dos solos;
- conhecer os métodos e técnicas de classificação de solos;
- adquirir a capacidade de ler e interpretar cartas de solos.
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Domínio de terminologia técnica e científica utilizada em agricultura.
Fundamentar a integração das operações gerais de cultura com as características do ambiente biofísico, económico e social da exploração agrícola e com a natureza das actividades (produções vegetais e animais), combinando racionalmente os recursos disponíveis em diferentes modos de produção.
Desenvolver uma visão integrada da agricultura e da sua multifuncionalidade.
Compreender que a agricultura pelo espaço que ocupa, pela população que requer, pelo valor que gera, desempenha um conjunto diversificado de funções com grande impacte na utilização dos recursos naturais e na sociedade pelo que os agro-sistemas devem basear-se a longo prazo em processos produtivos ecologicamente sustentáveis, socialmente responsáveis mas também economicamente eficientes
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções, e a forma de avaliar o seu desempenho.
Fornecer conhecimentos básicos sobre a biologia dos principais grupos de animais invertebrados e vertebrados.
A Célula é a unidade fundamental da vida, e o conhecimento da sua fisiologia constitui a base onde se apoia toda a Biologia e as suas aplicações, como a Medicina moderna. O objetivo desta UC é dar a conhecer aos alunos a Biologia da Célula a nível geral, incluindo as suas estruturas e processos funcionais principais, e respetivas bases moleculares, assim como as metodologias experimentais utilizadas para contruir esse conhecimento.
Esta unidade curricular tem por objectivo proporcionar aos estudantes uma visão geral da diversidade e evolução de: fungos, protistas e plantas. A abordagem ao Reino Plantae inclui o conceito de alternância de gerações no seu ciclo de vida, o estudo da morfologia de famílias selecionadas, das suas estruturas vegetativas e reprodutivas, das características anatómicas internas, uma introdução à fisiologia vegetal, incluindo as relações hídricas e transporte interno, e ainda classificação dos grandes grupos vegetais de acordo com as suas relações filogenéticas.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Estudo das geometrias afim e projectiva sobre um corpo e uma introdução às curvas algébricas planas. Será feito uso teoria das Acções de Grupos, da Álgebra Linear, Álgebra Bilinear e Formas Quadráticas, e resultados elementares sobre anéis, anéis de polinómios sobre um corpo e extensões de corpos
Objectivos A Geologia Estrutural é a ciência (ramo da Geologia) que tem como objectivo o estudo das estruturas (forma e geometria interna e externa) adquiridas pelos corpos rochosos após a sua formação, as suas causas e distribuição geográfica. A Geologia Estrutural avança, não só pela mera descrição das estruturas, mas através da análise rigorosa dessas estruturas e dos mecanismos que as geram. Para se conseguir isto, é necessário recorrer à quantificação, à formulação matemática e ao estabelecimento de modelos físicos. Os objectivos da Geologia Estrutural incluem dois pontos fundamentais: • Definição, caracterização e relação das estruturas observadas e os episódios de deformação; • Caracterização do estado de tensão dominante em cada fase de deformação.
Disciplina que trata de dois temas essenciais, a Estratigrafia e a Paleontologia divididos em sub-temas. Pela aplicação dos princípios fundamentais da Estratigrafia e das metodologias clássicas de correlação bem como de outras mais recentes como a análise de fácies, a análise tectonossedimentar e a análise sequencial, e pela caracterização física, química e biológica dos ambientes, processos e produtos sedimentares, enquadrados no contexto geológico e temporal em que ocorrem, objectiva-se o conhecimento e a compreensão de modelos causa/efeito tendo como permuta principal o processo/produto geológico integrado na análise espacial e temporal de bacias sedimentares e respectivas relações com a geodinâmica ao longo dos tempos geológicos Na Paleontologia Geral pretende-se que os alunos adquiram conhecimentos básicos da Paleontologia, nomeadamente sobre as aplicações desta disciplina, métodos e técnicas de investigação, relações com a Estratigrafia e Geohistória, assim como sobre a Sistemática Paleontológica. Os outros sub-temas dizem respeito à Paleozoologia e Paleobotânica e Evolução da Vida na Terra e tem por objectivo fornecer conhecimentos que permitam a identificação dos fósseis mais importantes no estudo da Estratigrafia salientando a sua importância no estabelecimento de biozonas, correlações estratigráficas, interpretação dos ambientes sedimentares, conhecimento da evolução da vida e sua relação com a história da Terra.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
Introdução à Física Térmica. Noções básicas de Termodinâmica clássica e de Mecânica Estatística. Aplicações a sistemas clássicos simples e a sistemas quânticos.
O objetivo básico do curso é que o estudante compreenda o modo como a anatomia está associada à função das plantas. Sendo as plantas organismos complexos, o curso explora aspetos que as tornam peculiares, centrando-se especialmente nos processos bioquímicos e moleculares envolvidos no seu crescimento e desenvolvimento. É também objetivo do curso que o estudante compreenda o modo como as plantas interatuam com o meio ambiente.
Aquisição de conceitos básicos e fundamentais sobre os processos geodinâmicos internos e externos, sua interdependência e compreensão dos seus efeitos.
Aquisição de conhecimentos teóricos sobre as leis que regem a distribuição dos elementos químicos nos processos geoquímicos naturais; resolução de casos práticos de tratamento de dados analíticos que permitam caracterizar a evolução primária e o efeito de processos geoquímicos secundários; compreensão dos efeitos da intervenção do homem no equilíbrio do ambiente natural a partir do estudo da mobilidade e dispersão dos elementos
O objectivo geral desta Unidade Curricular é proporcionar conhecimentos sobre Horticultura Herbácea Geral, com ênfase nos aspectos de engenharia hortícola das culturas protegidas.
Concretamente, pretende-se que os alunos: 1) Desenvolvam uma visão integrada da horticultura herbácea, nomeadamente ao nível dos factores de produção e sua optimização; 2) Conheçam a relevância económica e social da horticultura herbácea, com ênfase para a geografia hortícola nacional, peso dos produtos hortícolas na economia agraria nacional e no comércio externo; 3) Conheçam as principais classificações utilizadas para enquadrar as plantas hortícolas, incluindo a nomenclatura científica das principais espécies; 4) Compreendam as bases fisiológicas das respostas das plantas ao condicionamento ambiental e conheçam as ferramentas disponíveis para o condicionamento ambiental adequado aos objectivos pretendidos.
Dotar os alunos com as competências necessárias à resolução de problemas geológicos por recurso a ferramentas informáticas.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
A disciplina de Introdução à Química dos Materiais é uma unidade curricular destinada a alunos do primeiro ciclo dos cursos da Faculdade de Ciências da Universidade de Porto. Trata-se de uma disciplina de carácter introdutório e generalista que versa a estrutura interna das várias classes de materiais (a diferentes escalas, desde a escala atómico-molecular à macroscópica), as propriedades químicas, físicas e mecânicas diferenciadoras dos materiais, e, ainda, a sua função e aplicação prática.
Pretende-se desenvolver nos alunos a capacidade de compreensão e descrição dos diferentes procedimentos analíticos habitualmente usados em análise química, identificando os seus aspectos comuns e mostrando as suas características particulares que os tornam específicos para aplicações analíticas. Assimilação e integração de conceitos e de características de modo a proporcionar uma visão abrangente dos processos baseados no equilíbrio heterógeneo, em particular, os processos de separação física e química. Proporcionar a aquisição de conhecimentos sobre análise volumétrica.
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Desenvolvimento de competências laboratoriais na síntese e caracterização de compostos inorgânicos recorrendo a operações unitárias laboratoriais e técnicas instrumentais de caracterização (condutimetria, espectroscopia de UV/vis, espectroscopia de FTIR, medição de momentos magnéticos). Aquisição de capacidade de adaptação a situações novas e de interpretação de resultados.
Execução de algumas técnicas básicas (de purificação / identificação) comuns em Química Orgânica; 2 Execução laboratorial da síntese de compostos orgânicos; 3 Desenvolvimento da capacidade de uma análise crítica dos resultados obtidos; 4 Elaboração de um relatório científico; 5Desenvolvimento de alguma autonomia no laboratório.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Conhecer a fundamentação da MQ.
Conhecer o formalismo matemático da Mecânica Quântica.
Resolver a equação de Schrödinger (resolução exata de casos simples)
Aprender os métodos perturbativos de resolução de problemas.
Aprender a teoria geral do momento angular.
Abordar alguns tópicos fundamentais da biologia das bactérias, focando as suas estruturas vegetativas e reprodutoras, genética, ecologia e a sistemática e taxonomia.
Executar e discutir trabalhos práticos relacionados com a biologia destes organismos.
No final da disciplina, os alunos com aproveitamento deverão possuir noções fundamentais sobre a biologia das bactérias e saber executar experiências básicas nesta área.
• Familiarização com ideias e métodos de Mecânica Ondulatória, Elasticidade e Hidrodinâmica. • Compreender o acoplamento entre osciladores lineares; noção de modos normais. • Entender o conceito de onda, e a sua descrição e classificações nas suas mais variadas vertentes de aplicação à física. • Efectuar análise de Fourier, bem como entender a sua importância no estudo de ondas lineares. • Compreender o resultado da sobreposição de ondas e o fenómeno de interferência e difracção. • Compreender os conceitos de velocidade de fase e de grupo e o conceito de dispersão. • Entender e descrever o estado de deformação e as tensões aplicadas num corpo elástico isotrópico, bem como relacionar as duas. • Analisar problemas simples de dinâmica de fluídos e de equilíbrio de fluídos. • Efectuar a ligação a problemas de tecnologia.
Esta unidade curricular tem como objetivo principal apresentar uma visão coerente e integrada dos fundamentos químicos dos principais fenómenos biológicos, começando por uma descrição das bases moleculares da vida e prosseguindo pela descrição e racionalização físico-química de processos biológicos vitais e grandes vias metabólicas dos seres vivos.
Proporcionar conhecimentos sobre ligação química e geometria molecular em compostos inorgânicos. Aplicação dos conceitos de termodinâmica química, de ácido-base e de oxidação-redução à previsão da reactividade e estabilidade de compostos inorgânicos. Introdução à química dos complexos de metais de transição.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
Ensinar as bases teóricas e práticas necessárias para lidar com dados geográficos, em termos da sua aquisição, estruturação, manipulação, pesquisa e análise num SIG.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
A disciplina de Toxicologia Geral visa fornecer conhecimentos básicos nesta área. Pretende-se referir e analisar a importância dos principais poluentes. Pretende-se ainda formar e informar os alunos sobre as principais questões de toxicologia geral no âmbito nacional e internacional. Serão ainda objectivos fundamentais desta disciplina o fornecimento de conceitos teóricos importantes em toxicologia geral, nomeadamente no que diz respeito ao processo de intoxicação, aos efeitos tóxicos em diferentes sistemas de órgãos, às metodologias de planeamento experimental, de quantificação e de aplicação dos resultados a situações reais de avaliação de risco. Far-se-á referência ás principais aplicações da Toxicologia.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Aplicação dos conceitos básicos de agricultura e agronomia através de uma visão integrada dos principais sistemas de produção vegetal e animal. No final desta Unidade curricular pretende-se que o aluno: 1) compreenda as técnicas e práticas de intensificação utilizadas em fitotecnias especializadas; 2) consiga executar projectos básicos das necessidades hídricas das culturas e respectiva programação de rega, 3) conheça o processo de tomada de decisão na protecção integrada, 4) integrar equipas multidisciplinares para estudar problemas complexos ao nível do sistema de agricultura.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Nesta disciplina pretende-se que os alunos compreendam e dominem os principais mecanismos fisiológicos que estão na base dos sistemas digestivo, reprodutivo, lactação, crescimento e comportamento dos animais de interesse zootécnico.
Habilitar os alunos com conhecimentos básicos sobre etapas fundamentais relativas à origem e evolução do homem, e com um quadro conceptual que lhes permita compreender os padrões de diversidade biológica e genética das populações humanas contemporâneas. Familiarizá-los com ferramentas de análise em investigação antropológica.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Adquirir os conhecimentos de base na área da Ecologia e saber utilizá-los para interpretar e intervir em situações concretas.
•Obter formação de base em Eletromagnetismo. •Derivar e apresentar as leis e métodos do Eletromagnetismo numa perspetiva fenomenológica. •Estabelecer ligações e paralelismos entre o Eletromagnetismo e a Mecânica usando conceitos como força e energia. •Evidenciar a importância do conceito de campo na formulação das leis do Eletromagnetismo e enquanto entidade mediadora das interações físicas. •Aplicar, no contexto do eletromagnetismo, conceitos e métodos da Análise Vectorial e do Cálculo Integral no espaço. •Apresentar e descrever aplicações relevantes do Eletromagnetismo em ciência e tecnologia.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Compreender a inadequação dos conceitos clássicos na interpretação de alguns resultados experimentais e a necessidade de uma nova formulação da Física. Introduzir a mecânica ondulatória, fazendo aplicações a sistemas unidimensionais. Compreender a estrutura nuclear e processos nucleares. Estudar aplicações da Física Quântica em Astrofísica, Matéria Condensada e/ou Óptica.
Fornecimento de bases teóricas e práticas para a compreensão da organização e fisiologia dos principais sistemas animais
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
|
Aprendizagem dos princípios essenciais relacionados com as várias áreas da genética: genética mendeliana, citogenética, genética molecular, genética populacional e genética quantitativa, com especial atenção nas possíveis aplicações dos vários conceitos e métodos de análise.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Efectuar medições e o respectivo registo com rigor Familiarização com instrumentos de medida básicos e universais Utilizar técnicas básicas de análise de dados Distinguir o conceito de precisão do de exactidão Promover a compreensão de conceitos de Física Realizar actividades experimentais de forma competente, a partir da leitura de protocolos Desenvolver competências de trabalho cooperativo Promover a pesquisa de informação relevante para o trabalho experimental Elaborar e escrever relatórios de actividades experimentais
Prática laboratorial em Física e Eletrónica.
Familiarização dos estudantes com aspectos de eletrónica e instrumentação necessários à realização de trabalho experimental, através da execução de um conjunto representativo de trabalhos de Física e Eletrónica, incluindo análise dos resultados experimentais, cálculo de erros, representação gráfica, e avaliação crítica dos resultados obtidos;
Promoção da pesquisa de informação relevante para o trabalho experimental;
Elaboração e redação de relatórios de atividades experimentais;
Desenvolvimento de competências de trabalho de grupo.
Integração dos conhecimentos adquiridos nas unidades curriculares de Química Analítica e Introdução ao processo analítico na prática laboratorial de processos volumétricos, de separação física e de métodos potenciométricos e espetrofotométricos, através da execução de diversos trabalhos práticos. Desenvolvimento de capacidades de execução laboratorial, registo sistemático, interpretação de resultados experimentais e sua avaliação crítica.
Desenvolver aptidões para a realização de trabalho experimental, registo sistemático de resultados, interpretação e discussão de resultados experimentais, apresentação de resultados e elaboração de relatórios escritos. Desenvolver a capacidade de adaptação a novas situações e de trabalho em grupo.
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Combinatória que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Familiarização com o processo de estudo, modelação, resolução e análise de resultados em problemas de decisão e optimização. Formalização de modelos de optimização em programação matemática.
Desenvolver aptidões para avaliar a complexidade computacional de problemas e escolher apropriadamente algoritmos na área investigação operacional e de programação por restrições.
Familiarização com linguagens e bibliotecas existentes e sua aplicação na resolução de problemas de decisão.
Pretende-se que com base nos conhecimentos e experiência obtidas com a frequência desta disciplina, os alunos adquiram competências que lhes permitam intervir nas várias temáticas relacionadas com a Microbiologia Alimentar. Espera-se ainda que os alunos compreendam a importância das matérias abordadas para a indústria alimentar e numa perspectiva de saúde pública.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
Aquisição de conhecimentos teóricos e práticos essenciais para a compreensão e interpretação integrada dos processos envolvidos na génese das rochas sedimentares e dos solos.
Como resultados da aprendizagem e competências, pretende-se que os estudantes sejamcapazes de:
- enquadrar as rochas sedimentares no contexto da dinâmica dos processos geológicos;
- descrever e classificar as rochas sedimentares;
- interpretar os processos de meteorização, transporte a deposição dos sedimentos que formam as rochas;
- compreender as condições fisico-químicas associadas aos ambientes onde se depositaram os sedimentos que dão origem às rochas sedimentares;
- conhecer os processos diagenéticos associados à génese das rochas sedimentares;
- compreender a génese e evolução dos solos;
- conhecer os métodos e técnicas de classificação de solos;
- adquirir a capacidade de ler e interpretar cartas de solos.
O estudante deverá ser capaz de:
- compreender, utilizar e desenvolver programas com tipos abstratos de dados (TAD) de acordo com os requisitos de problemas propostos;
- compreender e utilizar as noções de atributo e método de um tipo abstrato de dados.
- utilizar e adaptar, programando-os, TADs que implementam listas ligadas, pilhas, filas, árvores binárias, heaps, tabelas de hash e grafos;
- analisar trechos de algoritmos do ponto de vista da complexidade computacional e situá-los numa ordem de complexidade;
- programar funções recursivas;
- programar e analisar algoritmos de procura e inserção sequencial, em lista ordenada, em árvore ordenada e em tabela de hash;
- programar e analisar algoritmos de ordenação tais como o bubblesort, mergesort. quicksort e heapsort.
- programar e analisar algoritmos de criaçao e manipulação de estruturas de dados como árvores binárias, árvores binárias ordenadas, heaps e grafos.
Nota: nesta unidade curricular a programação é feita utilizando a linguagem Python.
O objetivo principal é melhorar a formação científica em Química Ambiental:
aplicar os princípios químicos à compreensão dos fenómenos ambientais, sem esquecer o papel dos organismos vivos nesses mesmos fenómenos; compreender os processos que têm lugar nos compartimentos ambientais e o modo como a atividade humana interatua com os processos naturais; combinar a aplicação dos princípios químicos ao maior desafio que hoje se põe à humanidade – a recuperação, manutenção e a melhoria da qualidade ambiental.
Outros objectivos: melhorar a capacidade de interpretar textos, encontrar informação, sintetizar e transmitir conhecimentos no âmbito da Química Ambiental; aquisição de uma perspetiva global da Química Ambiental nos diversos compartimentos ambientais.
A recolha e a preparação de uma amostra são passos essenciais num procedimento analítico e, apesar disso, são aqueles que o analista poderá estar menos preparado para enfrentar. Com esta disciplina pretende-se minimizar o efeito dos erros de amostragem no resultado final da análise, introduzindo as noções básicas do procedimento de amostragem, apresentando e discutindo as várias estratégias possíveis para a realização da amostragem. Aquisição de conhecimentos sobre os diversos processos de tratamento de amostras directamente relacionados ou não com o método de análise.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Esta disciplina trata de tópicos de termodinâmica aplicados a diversos processos no âmbito da indústria e engenharia química.
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Domínio de terminologia técnica e científica utilizada em agricultura.
Fundamentar a integração das operações gerais de cultura com as características do ambiente biofísico, económico e social da exploração agrícola e com a natureza das actividades (produções vegetais e animais), combinando racionalmente os recursos disponíveis em diferentes modos de produção.
Desenvolver uma visão integrada da agricultura e da sua multifuncionalidade.
Compreender que a agricultura pelo espaço que ocupa, pela população que requer, pelo valor que gera, desempenha um conjunto diversificado de funções com grande impacte na utilização dos recursos naturais e na sociedade pelo que os agro-sistemas devem basear-se a longo prazo em processos produtivos ecologicamente sustentáveis, socialmente responsáveis mas também economicamente eficientes
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções, e a forma de avaliar o seu desempenho.
Fornecer conhecimentos básicos sobre a biologia dos principais grupos de animais invertebrados e vertebrados.
A Célula é a unidade fundamental da vida, e o conhecimento da sua fisiologia constitui a base onde se apoia toda a Biologia e as suas aplicações, como a Medicina moderna. O objetivo desta UC é dar a conhecer aos alunos a Biologia da Célula a nível geral, incluindo as suas estruturas e processos funcionais principais, e respetivas bases moleculares, assim como as metodologias experimentais utilizadas para contruir esse conhecimento.
Esta unidade curricular tem por objectivo proporcionar aos estudantes uma visão geral da diversidade e evolução de: fungos, protistas e plantas. A abordagem ao Reino Plantae inclui o conceito de alternância de gerações no seu ciclo de vida, o estudo da morfologia de famílias selecionadas, das suas estruturas vegetativas e reprodutivas, das características anatómicas internas, uma introdução à fisiologia vegetal, incluindo as relações hídricas e transporte interno, e ainda classificação dos grandes grupos vegetais de acordo com as suas relações filogenéticas.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Estudo das geometrias afim e projectiva sobre um corpo e uma introdução às curvas algébricas planas. Será feito uso teoria das Acções de Grupos, da Álgebra Linear, Álgebra Bilinear e Formas Quadráticas, e resultados elementares sobre anéis, anéis de polinómios sobre um corpo e extensões de corpos
Objectivos A Geologia Estrutural é a ciência (ramo da Geologia) que tem como objectivo o estudo das estruturas (forma e geometria interna e externa) adquiridas pelos corpos rochosos após a sua formação, as suas causas e distribuição geográfica. A Geologia Estrutural avança, não só pela mera descrição das estruturas, mas através da análise rigorosa dessas estruturas e dos mecanismos que as geram. Para se conseguir isto, é necessário recorrer à quantificação, à formulação matemática e ao estabelecimento de modelos físicos. Os objectivos da Geologia Estrutural incluem dois pontos fundamentais: • Definição, caracterização e relação das estruturas observadas e os episódios de deformação; • Caracterização do estado de tensão dominante em cada fase de deformação.
Disciplina que trata de dois temas essenciais, a Estratigrafia e a Paleontologia divididos em sub-temas. Pela aplicação dos princípios fundamentais da Estratigrafia e das metodologias clássicas de correlação bem como de outras mais recentes como a análise de fácies, a análise tectonossedimentar e a análise sequencial, e pela caracterização física, química e biológica dos ambientes, processos e produtos sedimentares, enquadrados no contexto geológico e temporal em que ocorrem, objectiva-se o conhecimento e a compreensão de modelos causa/efeito tendo como permuta principal o processo/produto geológico integrado na análise espacial e temporal de bacias sedimentares e respectivas relações com a geodinâmica ao longo dos tempos geológicos Na Paleontologia Geral pretende-se que os alunos adquiram conhecimentos básicos da Paleontologia, nomeadamente sobre as aplicações desta disciplina, métodos e técnicas de investigação, relações com a Estratigrafia e Geohistória, assim como sobre a Sistemática Paleontológica. Os outros sub-temas dizem respeito à Paleozoologia e Paleobotânica e Evolução da Vida na Terra e tem por objectivo fornecer conhecimentos que permitam a identificação dos fósseis mais importantes no estudo da Estratigrafia salientando a sua importância no estabelecimento de biozonas, correlações estratigráficas, interpretação dos ambientes sedimentares, conhecimento da evolução da vida e sua relação com a história da Terra.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
Introdução à Física Térmica. Noções básicas de Termodinâmica clássica e de Mecânica Estatística. Aplicações a sistemas clássicos simples e a sistemas quânticos.
O objetivo básico do curso é que o estudante compreenda o modo como a anatomia está associada à função das plantas. Sendo as plantas organismos complexos, o curso explora aspetos que as tornam peculiares, centrando-se especialmente nos processos bioquímicos e moleculares envolvidos no seu crescimento e desenvolvimento. É também objetivo do curso que o estudante compreenda o modo como as plantas interatuam com o meio ambiente.
Aquisição de conceitos básicos e fundamentais sobre os processos geodinâmicos internos e externos, sua interdependência e compreensão dos seus efeitos.
Aquisição de conhecimentos teóricos sobre as leis que regem a distribuição dos elementos químicos nos processos geoquímicos naturais; resolução de casos práticos de tratamento de dados analíticos que permitam caracterizar a evolução primária e o efeito de processos geoquímicos secundários; compreensão dos efeitos da intervenção do homem no equilíbrio do ambiente natural a partir do estudo da mobilidade e dispersão dos elementos
O objectivo geral desta Unidade Curricular é proporcionar conhecimentos sobre Horticultura Herbácea Geral, com ênfase nos aspectos de engenharia hortícola das culturas protegidas.
Concretamente, pretende-se que os alunos: 1) Desenvolvam uma visão integrada da horticultura herbácea, nomeadamente ao nível dos factores de produção e sua optimização; 2) Conheçam a relevância económica e social da horticultura herbácea, com ênfase para a geografia hortícola nacional, peso dos produtos hortícolas na economia agraria nacional e no comércio externo; 3) Conheçam as principais classificações utilizadas para enquadrar as plantas hortícolas, incluindo a nomenclatura científica das principais espécies; 4) Compreendam as bases fisiológicas das respostas das plantas ao condicionamento ambiental e conheçam as ferramentas disponíveis para o condicionamento ambiental adequado aos objectivos pretendidos.
Dotar os alunos com as competências necessárias à resolução de problemas geológicos por recurso a ferramentas informáticas.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
A disciplina de Introdução à Química dos Materiais é uma unidade curricular destinada a alunos do primeiro ciclo dos cursos da Faculdade de Ciências da Universidade de Porto. Trata-se de uma disciplina de carácter introdutório e generalista que versa a estrutura interna das várias classes de materiais (a diferentes escalas, desde a escala atómico-molecular à macroscópica), as propriedades químicas, físicas e mecânicas diferenciadoras dos materiais, e, ainda, a sua função e aplicação prática.
Pretende-se desenvolver nos alunos a capacidade de compreensão e descrição dos diferentes procedimentos analíticos habitualmente usados em análise química, identificando os seus aspectos comuns e mostrando as suas características particulares que os tornam específicos para aplicações analíticas. Assimilação e integração de conceitos e de características de modo a proporcionar uma visão abrangente dos processos baseados no equilíbrio heterógeneo, em particular, os processos de separação física e química. Proporcionar a aquisição de conhecimentos sobre análise volumétrica.
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Fornecer uma formação básica em Química Laboratorial, através da realização de trabalhos práticos envolvendo técnicas e operações fundamentais.
Desenvolvimento de competências laboratoriais na síntese e caracterização de compostos inorgânicos recorrendo a operações unitárias laboratoriais e técnicas instrumentais de caracterização (condutimetria, espectroscopia de UV/vis, espectroscopia de FTIR, medição de momentos magnéticos). Aquisição de capacidade de adaptação a situações novas e de interpretação de resultados.
Execução de algumas técnicas básicas (de purificação / identificação) comuns em Química Orgânica; 2 Execução laboratorial da síntese de compostos orgânicos; 3 Desenvolvimento da capacidade de uma análise crítica dos resultados obtidos; 4 Elaboração de um relatório científico; 5Desenvolvimento de alguma autonomia no laboratório.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Aprender os conceitos e técnicas básicas da Lógica de Primeira Ordem, da Teoria de Conjuntos e da sua axiomatização. Em particular, esclarecer a noção de demonstração, adquirir o domínio de métodos de prova e ficar a conhecer alguns aspetos mais operacionais da Teoria dos Conjuntos, nomeadamente a aritmética da cardinalidade.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Conhecer a fundamentação da MQ.
Conhecer o formalismo matemático da Mecânica Quântica.
Resolver a equação de Schrödinger (resolução exata de casos simples)
Aprender os métodos perturbativos de resolução de problemas.
Aprender a teoria geral do momento angular.
Abordar alguns tópicos fundamentais da biologia das bactérias, focando as suas estruturas vegetativas e reprodutoras, genética, ecologia e a sistemática e taxonomia.
Executar e discutir trabalhos práticos relacionados com a biologia destes organismos.
No final da disciplina, os alunos com aproveitamento deverão possuir noções fundamentais sobre a biologia das bactérias e saber executar experiências básicas nesta área.
• Familiarização com ideias e métodos de Mecânica Ondulatória, Elasticidade e Hidrodinâmica. • Compreender o acoplamento entre osciladores lineares; noção de modos normais. • Entender o conceito de onda, e a sua descrição e classificações nas suas mais variadas vertentes de aplicação à física. • Efectuar análise de Fourier, bem como entender a sua importância no estudo de ondas lineares. • Compreender o resultado da sobreposição de ondas e o fenómeno de interferência e difracção. • Compreender os conceitos de velocidade de fase e de grupo e o conceito de dispersão. • Entender e descrever o estado de deformação e as tensões aplicadas num corpo elástico isotrópico, bem como relacionar as duas. • Analisar problemas simples de dinâmica de fluídos e de equilíbrio de fluídos. • Efectuar a ligação a problemas de tecnologia.
Esta unidade curricular tem como objetivo principal apresentar uma visão coerente e integrada dos fundamentos químicos dos principais fenómenos biológicos, começando por uma descrição das bases moleculares da vida e prosseguindo pela descrição e racionalização físico-química de processos biológicos vitais e grandes vias metabólicas dos seres vivos.
Proporcionar conhecimentos sobre ligação química e geometria molecular em compostos inorgânicos. Aplicação dos conceitos de termodinâmica química, de ácido-base e de oxidação-redução à previsão da reactividade e estabilidade de compostos inorgânicos. Introdução à química dos complexos de metais de transição.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
Ensinar as bases teóricas e práticas necessárias para lidar com dados geográficos, em termos da sua aquisição, estruturação, manipulação, pesquisa e análise num SIG.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
A disciplina de Toxicologia Geral visa fornecer conhecimentos básicos nesta área. Pretende-se referir e analisar a importância dos principais poluentes. Pretende-se ainda formar e informar os alunos sobre as principais questões de toxicologia geral no âmbito nacional e internacional. Serão ainda objectivos fundamentais desta disciplina o fornecimento de conceitos teóricos importantes em toxicologia geral, nomeadamente no que diz respeito ao processo de intoxicação, aos efeitos tóxicos em diferentes sistemas de órgãos, às metodologias de planeamento experimental, de quantificação e de aplicação dos resultados a situações reais de avaliação de risco. Far-se-á referência ás principais aplicações da Toxicologia.
Conhecer os princípios técnico-científicos que regem a produção de uva.
Desenvolver competências que permitam a aplicação em toda a área da vitivinicultura desses princípios e de novas tecnologias de produção, tais como sistemas de condução, gestão do coberto vegetal, relações hídricas da videira e mecanização da cultura da vinha.
Aplicação dos conceitos básicos de agricultura e agronomia através de uma visão integrada dos principais sistemas de produção vegetal e animal. No final desta Unidade curricular pretende-se que o aluno: 1) compreenda as técnicas e práticas de intensificação utilizadas em fitotecnias especializadas; 2) consiga executar projectos básicos das necessidades hídricas das culturas e respectiva programação de rega, 3) conheça o processo de tomada de decisão na protecção integrada, 4) integrar equipas multidisciplinares para estudar problemas complexos ao nível do sistema de agricultura.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Nesta disciplina pretende-se que os alunos compreendam e dominem os principais mecanismos fisiológicos que estão na base dos sistemas digestivo, reprodutivo, lactação, crescimento e comportamento dos animais de interesse zootécnico.
Habilitar os alunos com conhecimentos básicos sobre etapas fundamentais relativas à origem e evolução do homem, e com um quadro conceptual que lhes permita compreender os padrões de diversidade biológica e genética das populações humanas contemporâneas. Familiarizá-los com ferramentas de análise em investigação antropológica.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Objectivos:
Proporcionar conhecimentos básicos em Teoria Matemática dos Sistemas, área de matemática orientada para aplicações que lida com os princípios básicos subjacentes à análise e concepção de sistemas de controlo. A disciplina tem uma componente computacional em simulação de sistemas e utilização de ferramentas de CAD (SIMULINK/MATLAB).
Adquirir os conhecimentos de base na área da Ecologia e saber utilizá-los para interpretar e intervir em situações concretas.
•Obter formação de base em Eletromagnetismo. •Derivar e apresentar as leis e métodos do Eletromagnetismo numa perspetiva fenomenológica. •Estabelecer ligações e paralelismos entre o Eletromagnetismo e a Mecânica usando conceitos como força e energia. •Evidenciar a importância do conceito de campo na formulação das leis do Eletromagnetismo e enquanto entidade mediadora das interações físicas. •Aplicar, no contexto do eletromagnetismo, conceitos e métodos da Análise Vectorial e do Cálculo Integral no espaço. •Apresentar e descrever aplicações relevantes do Eletromagnetismo em ciência e tecnologia.
Compreender a inadequação dos conceitos clássicos na interpretação de alguns resultados experimentais e a necessidade de uma nova formulação da Física. Introduzir a mecânica ondulatória, fazendo aplicações a sistemas unidimensionais. Compreender a estrutura nuclear e processos nucleares. Estudar aplicações da Física Quântica em Astrofísica, Matéria Condensada e/ou Óptica.
Fornecimento de bases teóricas e práticas para a compreensão da organização e fisiologia dos principais sistemas animais
Os alunos ficarão a conhecer as principais espécies fruteiras arbóreas e arbustivas, a sua distribuição no mundo assim como os fatores que determinam essa distribuição . Saberão quais as operações culturais para instalação e manutenção de um pomar.
|
Aprendizagem dos princípios essenciais relacionados com as várias áreas da genética: genética mendeliana, citogenética, genética molecular, genética populacional e genética quantitativa, com especial atenção nas possíveis aplicações dos vários conceitos e métodos de análise.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Efectuar medições e o respectivo registo com rigor Familiarização com instrumentos de medida básicos e universais Utilizar técnicas básicas de análise de dados Distinguir o conceito de precisão do de exactidão Promover a compreensão de conceitos de Física Realizar actividades experimentais de forma competente, a partir da leitura de protocolos Desenvolver competências de trabalho cooperativo Promover a pesquisa de informação relevante para o trabalho experimental Elaborar e escrever relatórios de actividades experimentais
Prática laboratorial em Física e Eletrónica.
Familiarização dos estudantes com aspectos de eletrónica e instrumentação necessários à realização de trabalho experimental, através da execução de um conjunto representativo de trabalhos de Física e Eletrónica, incluindo análise dos resultados experimentais, cálculo de erros, representação gráfica, e avaliação crítica dos resultados obtidos;
Promoção da pesquisa de informação relevante para o trabalho experimental;
Elaboração e redação de relatórios de atividades experimentais;
Desenvolvimento de competências de trabalho de grupo.
Integração dos conhecimentos adquiridos nas unidades curriculares de Química Analítica e Introdução ao processo analítico na prática laboratorial de processos volumétricos, de separação física e de métodos potenciométricos e espetrofotométricos, através da execução de diversos trabalhos práticos. Desenvolvimento de capacidades de execução laboratorial, registo sistemático, interpretação de resultados experimentais e sua avaliação crítica.
Desenvolver aptidões para a realização de trabalho experimental, registo sistemático de resultados, interpretação e discussão de resultados experimentais, apresentação de resultados e elaboração de relatórios escritos. Desenvolver a capacidade de adaptação a novas situações e de trabalho em grupo.
Nesta unidade curricular pretende-se que o aluno conheça e compreenda alguns resultados importantes de Combinatória que, pela sua relevância atual no domínio da Matemática e pela sua enorme utilidade em aplicações, dentro e fora da Matemática, devem ser do conhecimento geral de qualquer matemático. Nesta unidade curricular o estudante deverá desenvolver também a sua aptidão para a resolução de problemas de cariz combinatório e a sua capacidade de estruturar e resolver problemas.
Familiarização com o processo de estudo, modelação, resolução e análise de resultados em problemas de decisão e optimização. Formalização de modelos de optimização em programação matemática.
Desenvolver aptidões para avaliar a complexidade computacional de problemas e escolher apropriadamente algoritmos na área investigação operacional e de programação por restrições.
Familiarização com linguagens e bibliotecas existentes e sua aplicação na resolução de problemas de decisão.
Pretende-se que com base nos conhecimentos e experiência obtidas com a frequência desta disciplina, os alunos adquiram competências que lhes permitam intervir nas várias temáticas relacionadas com a Microbiologia Alimentar. Espera-se ainda que os alunos compreendam a importância das matérias abordadas para a indústria alimentar e numa perspectiva de saúde pública.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
Aquisição de conhecimentos teóricos e práticos essenciais para a compreensão e interpretação integrada dos processos envolvidos na génese das rochas sedimentares e dos solos.
Como resultados da aprendizagem e competências, pretende-se que os estudantes sejamcapazes de:
- enquadrar as rochas sedimentares no contexto da dinâmica dos processos geológicos;
- descrever e classificar as rochas sedimentares;
- interpretar os processos de meteorização, transporte a deposição dos sedimentos que formam as rochas;
- compreender as condições fisico-químicas associadas aos ambientes onde se depositaram os sedimentos que dão origem às rochas sedimentares;
- conhecer os processos diagenéticos associados à génese das rochas sedimentares;
- compreender a génese e evolução dos solos;
- conhecer os métodos e técnicas de classificação de solos;
- adquirir a capacidade de ler e interpretar cartas de solos.
O estudante deverá ser capaz de:
- compreender, utilizar e desenvolver programas com tipos abstratos de dados (TAD) de acordo com os requisitos de problemas propostos;
- compreender e utilizar as noções de atributo e método de um tipo abstrato de dados.
- utilizar e adaptar, programando-os, TADs que implementam listas ligadas, pilhas, filas, árvores binárias, heaps, tabelas de hash e grafos;
- analisar trechos de algoritmos do ponto de vista da complexidade computacional e situá-los numa ordem de complexidade;
- programar funções recursivas;
- programar e analisar algoritmos de procura e inserção sequencial, em lista ordenada, em árvore ordenada e em tabela de hash;
- programar e analisar algoritmos de ordenação tais como o bubblesort, mergesort. quicksort e heapsort.
- programar e analisar algoritmos de criaçao e manipulação de estruturas de dados como árvores binárias, árvores binárias ordenadas, heaps e grafos.
Nota: nesta unidade curricular a programação é feita utilizando a linguagem Python.
O objetivo principal é melhorar a formação científica em Química Ambiental:
aplicar os princípios químicos à compreensão dos fenómenos ambientais, sem esquecer o papel dos organismos vivos nesses mesmos fenómenos; compreender os processos que têm lugar nos compartimentos ambientais e o modo como a atividade humana interatua com os processos naturais; combinar a aplicação dos princípios químicos ao maior desafio que hoje se põe à humanidade – a recuperação, manutenção e a melhoria da qualidade ambiental.
Outros objectivos: melhorar a capacidade de interpretar textos, encontrar informação, sintetizar e transmitir conhecimentos no âmbito da Química Ambiental; aquisição de uma perspetiva global da Química Ambiental nos diversos compartimentos ambientais.
A recolha e a preparação de uma amostra são passos essenciais num procedimento analítico e, apesar disso, são aqueles que o analista poderá estar menos preparado para enfrentar. Com esta disciplina pretende-se minimizar o efeito dos erros de amostragem no resultado final da análise, introduzindo as noções básicas do procedimento de amostragem, apresentando e discutindo as várias estratégias possíveis para a realização da amostragem. Aquisição de conhecimentos sobre os diversos processos de tratamento de amostras directamente relacionados ou não com o método de análise.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.
Introduzir conceitos e resultados básicos de Teoria dos Números e alguns dos seus aspectos computacionais. Dar algumas das suas aplicações criptográficas.
Esta disciplina trata de tópicos de termodinâmica aplicados a diversos processos no âmbito da indústria e engenharia química.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Ensinar as bases teóricas e práticas necessárias para lidar com dados geográficos, em termos da sua aquisição, estruturação, manipulação, pesquisa e análise num SIG.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
|
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Ao completar esta unidade curricular, o estudante deve conhecer e saber aplicar os conceitos e resultados básicos estudados. Pretende-se paralelamente que a frequência desta unidade curricular contribua para o desenvolvimento de aptidões e competências no âmbito da matemática discreta e dos algoritmos.
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções, e a forma de avaliar o seu desempenho.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Esta unidade curricular visa apresentar os conceitos e princípios básicos da mecânica clássica, dos fenómenos ondulatórios, e da relatividade restrita, com ênfase na compreensão de conceitos e na aplicação ao mundo real. Os alunos deverão ter a capacidade de manipular conceitos fundamentais e saber aplicá-los à resolução de problemas. Os estudantes serão motivados a considerar a aplicação dos princípios discutidos na cadeira a outras áreas do conhecimento científico e tecnológico.
Iniciar os estudantes na programação imperativa, fornecendo-lhes conceitos fundamentais de algoritmia e conhecimentos da linguagem de programação C. Dotar os estudantes da capacidade de construirem algoritmos a partir de especificações informais. Apresentar alguns algoritmos fundamentais.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Ao completar esta unidade curricular, o estudante deverá
- dominar os conceitos e princípios fundamentais da Estatística, e em particular da Inferência Estatística básica.
- conhecer as técnicas de inferência estatística mais comuns e sabe-las aplicar a problemas concretos;
- saber caracterizar um modelo de regressão linear e ser capaz de aplicar a teoria à análise de dados reais, envolvendo o ajustamento do modelo, diagnóstico e previsão;
- ser capaz de identificar e formular matematicamente um problema, de escolher métodos da estatística adequados e de analisar e interpretar de forma crítica os resultados obtidos.
Pretende-se também que o estudante adquira familiaridade com a linguagem de programação R na resolução de problemas.
Pretende-se que o estudante fique a conhecer alguns dos marcos mais importantes da história da Matemática, bem como a evolução de algumas das suas ideias e métodos basilares. E também que adquira algum espírito crítico relativamente a algumas simplificações redutoras e deturpações históricas que são infelizmente demasiado comuns em livros de texto de Matemática.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Familiarização com o processo de estudo, modelação, resolução e análise de resultados em problemas de decisão e optimização. Formalização de modelos de optimização em programação matemática.
Desenvolver aptidões para avaliar a complexidade computacional de problemas e escolher apropriadamente algoritmos na área investigação operacional e de programação por restrições.
Familiarização com linguagens e bibliotecas existentes e sua aplicação na resolução de problemas de decisão.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
O estudante deverá ser capaz de:
- compreender, utilizar e desenvolver programas com tipos abstratos de dados (TAD) de acordo com os requisitos de problemas propostos;
- compreender e utilizar as noções de atributo e método de um tipo abstrato de dados.
- utilizar e adaptar, programando-os, TADs que implementam listas ligadas, pilhas, filas, árvores binárias, heaps, tabelas de hash e grafos;
- analisar trechos de algoritmos do ponto de vista da complexidade computacional e situá-los numa ordem de complexidade;
- programar funções recursivas;
- programar e analisar algoritmos de procura e inserção sequencial, em lista ordenada, em árvore ordenada e em tabela de hash;
- programar e analisar algoritmos de ordenação tais como o bubblesort, mergesort. quicksort e heapsort.
- programar e analisar algoritmos de criaçao e manipulação de estruturas de dados como árvores binárias, árvores binárias ordenadas, heaps e grafos.
Nota: nesta unidade curricular a programação é feita utilizando a linguagem Python.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.
Compreensão do papel e dos procedimentos efectuados pelos administradores de redes e sistemas. Familiarização com alguns princípios gerais e prática laboratorial com a implementação e manutenção de alguns exemplos concretos de flexibilização de serviços críticos em contextos simulados de falha e operacionalizações em grande escala.
Introduzir os conceitos básicos de funcionamento de um computador, nomeadamente, o seu modelo de representação de dados e programas, as suas componentes e interacções, e a forma de avaliar o seu desempenho.
Compreensão e implementação de um compilador e interpretador de uma linguagem de programação.
Estudo das estruturas discretas fundamentais que estão na base formal da área de Ciência de Computadores/Informática.
A disciplina tem por objectivo introduzir aos alunos os conceitos base de criação e desenvolvimento de sistemas interactivos, tanto a nível de conceitos teóricos (usabilidade, desenho centrado no utilizador), como práticos (prototipagem de baixa fidelidade através da implementação de interfaces gráficas).
Os estudantes deverão entender a estrutura e funcionamento dos computadores digitais e sistemas de operacão e ter uma visão geral sobre a Ciência de Computadores.
Pretende-se que o aluno aprenda as noções básicas do raciocínio lógico e seja capaz de utilizar correctamente os sistemas dedutivos; compreenda as relações entre as semânticas e os sistemas dedutivos e a sua caracterização do ponto de vista da decidibilidade; reconheça o papel dos sistemas formais nas várias áreas da Ciência de Computadores.
Iniciar os estudantes na programação imperativa, fornecendo-lhes conceitos fundamentais de algoritmia e conhecimentos da linguagem de programação C. Dotar os estudantes da capacidade de construirem algoritmos a partir de especificações informais. Apresentar alguns algoritmos fundamentais.
Esta é uma disciplina introdutória às redes de comunicação de dados que pretende familiarizar os alunos com os seus conceitos fundamentais, baseando-se na Internet e na pilha protocolar TCP/IP.
O objetivo da unidade curricular é a familiarização dos alunos com os conceitos e tecnologias utilizados no desenvolvimento de aplicações centradas na web.
A disciplina de Arquitetura de Software tem como objetivo geral introduzir os alunos aos modelos conceptuais e ferramentas de software usadas em projetos informáticos de maior dimensão.
Dotar os estudantes da teoria e prática necessária à concepção, construção e análise de bases de dados relacionais.
Estudo e comparação de vários modelos de computação
(Turing-completos), do seu poder computacional e das suas limitações. Estudo das diversas classes de complexidade computacional.
Ao completar este curso espera-se que os alunos
- conheçam os modelos de computação clássicos utilizados no estudo da
computabilidade de diversos problemas;
- saibam provar a equivalência de vários modelos Turing-completos;
- conheçam os resultados e métodos mais importantes no estudo da
computabilidade e complexidade;
- saibam classificar exemplos concretos de problemas e provar a sua
(in)decidibilidade dentro das diversas classes de computabilidade.
- saibam classificar elemplos concretos pelas sua complexidade temporal e intrepertar essa classificação.
Objectivos: Estudo dos conceitos fundamentais e técnicas de uso mais generalizado da Inteligência Artificial.
Familiarização com o processo de estudo, modelação, resolução e análise de resultados em problemas de decisão e optimização. Formalização de modelos de optimização em programação matemática.
Desenvolver aptidões para avaliar a complexidade computacional de problemas e escolher apropriadamente algoritmos na área investigação operacional e de programação por restrições.
Familiarização com linguagens e bibliotecas existentes e sua aplicação na resolução de problemas de decisão.
Ensinar conceitos e resultados fundamentais sobre três modelos de computação básicos (autómatos finitos, autómatos de pilha e máquinas de Turing) e sobre as classes de linguagens formais associadas, com foco nas linguagens regulares e independentes de contexto.
O estudante deverá ser capaz de:
- compreender, utilizar e desenvolver programas com tipos abstratos de dados (TAD) de acordo com os requisitos de problemas propostos;
- compreender e utilizar as noções de atributo e método de um tipo abstrato de dados.
- utilizar e adaptar, programando-os, TADs que implementam listas ligadas, pilhas, filas, árvores binárias, heaps, tabelas de hash e grafos;
- analisar trechos de algoritmos do ponto de vista da complexidade computacional e situá-los numa ordem de complexidade;
- programar funções recursivas;
- programar e analisar algoritmos de procura e inserção sequencial, em lista ordenada, em árvore ordenada e em tabela de hash;
- programar e analisar algoritmos de ordenação tais como o bubblesort, mergesort. quicksort e heapsort.
- programar e analisar algoritmos de criaçao e manipulação de estruturas de dados como árvores binárias, árvores binárias ordenadas, heaps e grafos.
Nota: nesta unidade curricular a programação é feita utilizando a linguagem Python.
Fornecer aos alunos os conceitos fundamentais da teoria e prática da organização e funcionamento de um sistema de operação.
Ser capaz de implementar partes de um sistema de operação e de escrever programas utilizando a API de um sistema de operação.
Fornecer ao aluno experiência na utilização, administração e programação de alguns dos sistemas/aplicações mais utilizados em ambiente Windows. O enfoque particular será sobre o ambiente de programação do Visual Basic for Applications.
O programa proposto é leccionado em aulas teóricas onde os principais conceitos são introduzidos e são explicados exemplos práticos. Durante as aulas teóricas os alunos devem fazer apresentações relacionados com ou programa. Nos laboratórios os alunos aprenderão competências relacionadas com sistemas multimédia através da exploração de um tópico específico que escolheram do programa. Os alunos deverão ter que resolver problemas e programar uma aplicação. Irão desenvolver um projecto e criar uma aplicação que represente os conceitos apresentados nas aulas teóricas. Todos os resultados da aprendizagem ajudarão o aluno a compreender os princípios fundamentais de sistemas de multimédia e têm uma ligação directa com o programa descrito. Abrange a tecnologia do estado de arte e a experiência necessária para desenhar e desenvolver uma aplicação interactiva.
O programa visa ensinar os alunos como os sistemas de multimédias estão a ser actualmente utilizados nas diferentes indústrias.
O objectivo é despertar nos alunos a mesma curiosidade, a mesma paixão de descobrir e o mesmo desejo de adquirir conhecimento que motiva investigadores a explorar novas áreas relacionadas com sistemas de multimédia.
É esperado que no final desta cadeira o aluno tenha aprendido e compreendido tecnologia do estado de arte relacionado com os seguintes conceitos:
* Compreender quais são os princípios da animação em 3D baseado no conceito tradicional de animação em 2D.
* Explorar os diferentes tipos de sistema de captura de movimentos, realidade virtual e como estes podem trabalhar juntos.
* Compreender os principais conceitos relacionados com a teoria da informação e a visualização de dados.
* Compreender o uso da cor, texto e diagramas para a representação de informação.
* Desenvolvimento de um projecto de multimédia, criar uma demo e a sua respectiva documentação, a qual deve ser reflexo do seu resultado.