Abstract (EN):
An essential line of worldwide research towards a sustainable energy future is the materials and processes for carbon dioxide capture and storage. Energy from fossil fuels combustion always generates carbon dioxide, leading to a considerable environmental concern with the values of CO2 produced in the world. The increase in emissions leads to a significant challenge in reducing the quantity of this gas in the atmosphere. Many research areas are involved solving this problem, such as process engineering, materials science, chemistry, waste management, and politics and public engagement. To decrease this problem, green and efficient solutions have been extensively studied, such as Carbon Capture Utilization and Storage (CCUS) processes. In 2015, the Paris Agreement was established, wherein the global temperature increase limit of 1.5 degrees C above pre-industrial levels was defined as maximum. To achieve this goal, a global balance between anthropogenic emissions and capture of greenhouse gases in the second half of the 21st century is imperative, i.e., net-zero emissions. Several projects and strategies have been implemented in the existing systems and facilities for greenhouse gas reduction, and new processes have been studied. This review starts with the current data of CO2 emissions to understand the need for drastic reduction. After that, the study reviews the recent progress of CCUS facilities and the implementation of climate-positive solutions, such as Bioenergy with Carbon Capture and Storage and Direct Air Capture. Future changes in industrial processes are also discussed.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
26