Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Advanced design and simulation study of a centripetal turbine for efficient recovery of residual gas pressure
Publication

Advanced design and simulation study of a centripetal turbine for efficient recovery of residual gas pressure

Title
Advanced design and simulation study of a centripetal turbine for efficient recovery of residual gas pressure
Type
Article in International Scientific Journal
Year
2025
Authors
Mao, Y
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Cai, L
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Chertovskih, R
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Zhang, N
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Guo, W
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Applied EnergyImported from Authenticus Search for Journal Publications
Vol. 377
ISSN: 0306-2619
Publisher: Elsevier
Indexing
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-017-22Z
Abstract (EN): The transportation of natural gas offers significant opportunities for the recovery of residual pressure, a resource often underutilized due to valve regulations. Efficiently harnessing this residual pressure can markedly reduce the costs associated with gas transport, facilitating a more comprehensive use of energy resources. Central to this study is the development of a 90 mm micro-turbine, the pivotal element in the residual pressure recovery system. The research, supported by a custom-built turbine power generation test bench and guided by orthogonal experimental design, meticulously examines the impact of variables such as blade wrap angle, guide vane angle, and volute cross-section on the power generation capacity of the turbine. Employing a detailed entropy production rate model, the investigation delves into both the turbine's flow dynamics and entropy production distribution via sophisticated numerical simulations. Key findings reveal an optimized turbine design featuring a rectangular volute, a 10° guide vane exit angle, and a 50° blade wrap angle, achieving an impressive power output of 354.03 W under test conditions. The study identifies turbulence dissipation and wall entropy production as primary contributors to increased turbine entropy, with minimal effects from temperature-related entropy and time-averaged entropy production. It is demonstrated that augmenting the blade wrap angle promotes flow field development within the turbine, leading to enhanced turbulence dissipation entropy production. Conversely, reducing the guide vane angle boosts airflow velocity, aiding impeller work and subsequently increasing turbulence dissipation entropy production. Comparative analysis of various volute designs highlights the superior efficiency of the rectangular volute in energy conversion, reduced entropy production, and minimal velocity loss. This comprehensive research offers invaluable insights for understanding of power generation capacities, flow characteristics, and entropy production mechanisms in micro-centripetal turbines. © 2024 Elsevier Ltd
Language: English
Type (Professor's evaluation): Scientific
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Probabilistic multicriteria environmental assessment of power plants: A global approach (2020)
Another Publication in an International Scientific Journal
Isabel Soares; Juan Jose Cartelle Barros; Manuel Lara Coira; María Pilar de la Cruz López
On the right track? Energy use, carbon emissions, and intensities of world rail transportation, 1840-2020 (2024)
Another Publication in an International Scientific Journal
Tostes, B; Henriques, ST; Brockway, PE; Heun, MK; Domingos, T; Sousa, T
Electromagnetic energy harvesting using magnetic levitation architectures: A review (2020)
Another Publication in an International Scientific Journal
António Torres Marques; Pedro Carneiro; Marco P. Soares dos Santos; André Rodrigues; Jorge A.F. Ferreira; José A.O. Simões; Andrei L. Kholkin
1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell (2017)
Article in International Scientific Journal
Rui B. Ferreira; Daniela S. Falcão; Vânia B. Oliveira; Alexandra M. F. R. Pinto
Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques (2013)
Article in International Scientific Journal
Carvalho, D; Rocha, A; Pereira, R

See all (45)

Recommend this page Top
Copyright 1996-2024 © Reitoria da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-10-10 15:22:58 | Acceptable Use Policy | Data Protection Policy | Complaint Portal