Abstract (EN):
The study of the behaviour of adhesive joints under impact loadings is a very active field of research, driven by significant industrial interest. Many industries, such as the automotive industry, are currently employing adhesive joints extensively, making use of the inherent properties of adhesive joints to improve the mechanical behaviour, reduce weight, and simplify manufacturing. Reduced structural weight is achieved by combining multiple lightweight materials, which is made possible by using adhesive joints. Impact strength is also a major factor, as vehicles must be able to provide adequate safety levels for their occupants during collisions. Another example of industrial application is the defence industry, which uses bonded structures to withstand ballistic impacts, with extremely high impact velocities. Understanding the behaviour of adhesive joints under impact is, therefore, crucial for designing stronger and safer structures. This document aims to review the research that has been previously undertaken in this field. Discussed research topics include high strain rate property determination, adhesive joint testing, effects of coupling environmental conditions with impact loads, and sections on numerical and constitutive modelling procedures. The final sections describe some practical applications of adhesive joints under large strain rates and relate them to the fundamental concepts previously discussed.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
32