Abstract (EN):
The field of light-emitting nanoparticles has experienced an enormous development over the past two decades. The fluorescence of these nanometer-size crystalline particles, called quantum dots (QDs), can be both quenched and enhanced by different compounds. Since a high percentage of articles related to QDs are focused on theoretical studies, the development of analytical methods with real applications is an important step in order to progressively demonstrate the versatility of these particles. Moreover, taking into account that most of the QDs-based analytical methods are non-automated, the development of automated flow methodologies is still a field that presents an important analytical potential. With this purpose, two automatic methodologies, multicommutated flow injection analysis and sequential injection analysis, have been here applied to the analysis of quinolones in pharmaceutical formulations, making use of the quenching effect caused by the analytes over mercaptopropionic acid-capped CdTe QDs fluorescence. Both methodologies were compared in terms of versatility, sample throughput, sensitivity, etc., and applied to the determination of five quinolones in pharmaceutical preparations available in the Spanish Pharmacopoeia. The detection limits ranged between 26 and 50 mu mol L-1, and Relative Standard Deviations lower than 3% were observed in all cases.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
8