Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity

Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity

Título
Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity
Tipo
Artigo em Revista Científica Internacional
Ano
2008
Autores
Maykel Cruz Monteagudo
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Natalia N D S Cordeiro
(Autor)
FCUP
Fernanda Borges
(Autor)
FFUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Revista
Vol. 29
Páginas: 533-549
ISSN: 0192-8651
Editora: Wiley-Blackwell
Classificação Científica
FOS: Ciências exactas e naturais > Química
Outras Informações
ID Authenticus: P-004-177
Abstract (EN): Idiosyncratic drug toxicity (IDT), considered as a toxic host-dependent event, with an apparent lack of dose response relationship, is usually not predictable from early phases of clinical trials, representing a particularly confounding complication in drug development. Albeit a rare event (usually <1/5000), IDT is often life threatening and is one of the major reasons new drugs never reach the market or are withdrawn post marketing. Computational methodologies, like the computer-based approach proposed in the present study, can play an important role in addressing IDT in early drug discovery. We report for the first time a systematic evaluation of classification models to predict idiosyncratic hepatotoxicity based on linear discriminant analysis (LDA), artificial neural networks (ANN), and machine learning algorithms (OneR) in conjunction with a 3D molecular structure representation and feature selection methods. These modeling techniques (LDA, feature selection to prevent over-fitting and multicollinearity, ANN to capture nonlinear relationships in the data, as well as the simple OneR classifier) were found to produce QSTR models with satisfactory internal cross-validation statistics and predictivity on an external subset of chemicals. More specifically, the models reached values of accuracy/sensitivity/specificity over 84%/78%/90%, respectively in the training series along with predictivity values ranging from ca. 78 to 86% of correctly classified drugs. An LDA-based desirability analysis was carried out in order to select the levels of the predictor variables needed to trigger the more desirable drug, i.e. the drug with lower potential for idiosyncratic hepatotoxicity. Finally, two external test sets were used to evaluate the ability of the models in discriminating toxic from nontoxic structurally and phannacologically related drugs and the ability of the best model (LDA) in detecting potential idiosyncratic hepatotoxic drugs, respectively. The computational approach proposed here can be considered as a useful tool in early IDT prognosis. (c) 2007 Wiley Periodicals, Inc.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

3D-MEDNEs: an alternative "in silico" technique for chemical research in toxicology. 2. Quantitative Proteome-Toxicity Relationships (QPTR) based on mass spectrum spiral entropy (2008)
Artigo em Revista Científica Internacional
Maykel Cruz Monteagudo; Humberto Gonzalez Diaz; Fernanda Borges; Elena Rosa Dominguez; Natalia N D S Cordeiro
Stochastic molecular descriptors for polymers. 4. Study of complex mixtures with topological indices of mass spectra spiral and star networks: The blood proteome case (2008)
Artigo em Revista Científica Internacional
Maykel Cruz Monteagudo; Cristian R Robert Munteanu; Fernanda Borges; Natalia N D S Cordeiro; Eugenio Uriarte; Kuo Chen Chou; Humberto Gonzalez Diaz
Recent Advances on QSAR-Based Profiling of Agonist and Antagonist A(3) Adenosine Receptor Ligands (2013)
Artigo em Revista Científica Internacional
Changliang L Deng; Feng Luan; Maykel Cruz Monteagudo; Fernanda Borges; Natalia N D S Cordeiro
Quantitative Proteome-Property Relationships (QPPRs). Part 1: Finding biomarkers of organic drugs with mean Markov connectivity indices of spiral networks of blood mass spectra (2008)
Artigo em Revista Científica Internacional
Maykel Cruz Monteagudo; Cristian R Robert Munteanu; Fernanda Borges; Natalia N D S Cordeiro; Eugenio Uriarte; Humberto Gonzalez Diaz

Ver todas (14)

Da mesma revista

Response to "comment on density functional theory study of 1,2-dioxetanone decomposition in condensed phase" (2012)
Outra Publicação em Revista Científica Internacional
da silva, lp; da silva, jcge
Protein-Protein Docking Dealing With the Unknown (2010)
Outra Publicação em Revista Científica Internacional
Irina S Moreira; Pedro A Fernandes; Maria J Ramos
Comparative Analysis of the Performance of Commonly Available Density Functionals in the Determination of Geometrical Parameters for Zinc Complexes (2009)
Outra Publicação em Revista Científica Internacional
Sergio F Sousa; Emanuela S Carvalho; Diana M Ferreira; Isabel S Tavares; Pedro A Fernandes; Maria Joao Ramos; Jose A N F Gomes
Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for copper complexes (2013)
Outra Publicação em Revista Científica Internacional
Sergio F Sousa; Gaspar R P Pinto; Antonio J M Ribeiro; Joao T S Coimbra; Pedro A Fernandes; Maria Joao Ramos
Unified QSAR & Network-Based Computational Chemistry Approach to Antimicrobials. II. Multiple Distance and Triadic Census Analysis of Antiparasitic Drugs Complex Networks (2010)
Artigo em Revista Científica Internacional
Francisco J Prado Prado; Florencio M Ubeira; Fernanda Borges; Humberto Gonzalez Diaz

Ver todas (26)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-14 às 00:34:10 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico