Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > UNCERTAINTY-AWARE ARTERY/VEIN CLASSIFICATION ON RETINAL IMAGES

UNCERTAINTY-AWARE ARTERY/VEIN CLASSIFICATION ON RETINAL IMAGES

Título
UNCERTAINTY-AWARE ARTERY/VEIN CLASSIFICATION ON RETINAL IMAGES
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2019
Autores
Galdran, A
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Meyer, M
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Costa, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Maria Mendonça
(Autor)
FEUP
Aurélio Campilho
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ata de Conferência Internacional
Páginas: 556-560
16th IEEE International Symposium on Biomedical Imaging (ISBI)
Venice, ITALY, APR 08-11, 2019
Outras Informações
ID Authenticus: P-00Q-VM4
Abstract (EN): The automatic differentiation of retinal vessels into arteries and veins (A/V) is a highly relevant task within the field of retinal image analysis. however, due to limitations of retinal image acquisition devices, specialists can find it impossible to label certain vessels in eye fundus images. In this paper, we introduce a method that takes into account such uncertainty by design. For this, we formulate the A/V classification task as a four-class segmentation problem, and a Convolutional Neural Network is trained to classify pixels into background, A/V, or uncertain classes. The resulting technique can directly provide pixelwise uncertainty estimates. In addition, instead of depending on a previously available vessel segmentation, the method automatically segments the vessel tree. Experimental results show a performance comparable or superior to several recent A/V classification approaches. In addition, the proposed technique also attains state-of-the-art performance when evaluated for the task of vessel segmentation, generalizing to data that, was not used during training, even with considerable differences in terms of appearance and resolution.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 5
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-09-06 às 23:51:22 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico