Abstract (EN):
This paper presents a new classification approach to deal with class imbalance in TLC patterns, which is due to the huge difference between the number of normal and pathological cases as a consequence of the rarity of LSD diseases. The proposed architecture is formed by two decision stages: the first is implemented by a one-class classifier aiming at recognizing most of the normal samples; the second stage is a hierarchical classifier which deals with the remaining outliers that are expected to contain the pathological cases and a small percentage of normal samples. We have also evaluated this architecture by a forest of classifiers, using the majority voting as a, rule to generate the final classification. The results that were obtained proved that this approach is able to overcome some of the difficulties associated with class imbalance.
Idioma:
Inglês
Tipo (Avaliação Docente):
Científica
Nº de páginas:
10